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We present an ab initio study of the isoscalar monopole excitations of 4He using different realistic

nuclear interactions, including modern effective field theory potentials. In particular we concentrate on the

transition form factor FM to the narrow 0þ resonance close to threshold. FM exhibits a strong potential

model dependence, and can serve as a kind of prism to distinguish among different nuclear force models.

Compared to the measurements obtained from inelastic electron scattering off 4He, one finds that the

state-of-the-art theoretical transition form factors are at variance with experimental data, especially in the

case of effective field theory potentials. We discuss some possible reasons for such a discrepancy, which

still remains a puzzle.

DOI: 10.1103/PhysRevLett.110.042503 PACS numbers: 25.30.Fj, 21.30.�x, 21.45.�v, 24.30.Cz

The isoscalar monopole strength of large nuclei has been
extensively studied since the discovery of a giant mono-
pole resonance in 144Sm and 208Pb [1]. The reason for the
great interest in such excitations originates from their
connection to the incompressibility modulus of infinite
nuclear matter [2,3]. The alpha particle is a light nucleus
that however has a binding energy per particle similar to
that of large systems and a high central density. While it
possesses no bound excited states, it exhibits a very pro-
nounced narrow resonance (4He�) with the same quantum
numbers 0þ as the ground state, i.e., an isoscalar monopole
resonance. Today, the development of few-body theories
has reached a point where an ab initio calculation of the
four-body isoscalar monopole transition strength can be
carried out with high precision. As will become evident in
the following, the comparison of such four-body results
with experimental data can serve as a stringent test for
nuclear Hamiltonians that are the sole ingredients of an
ab initio quantum mechanical approach.

The four-nucleon isoscalar monopole resonance is
located at E

exp
R ¼ �8:20� 0:05 MeV, with a width of

270� 50 keV [4], just above the first two-body breakup
threshold Ep

thr ¼ �8:48 MeV into a proton and a triton and

below the next threshold En
thr ¼ �7:74 MeV into a neutron

and 3He. A summary of the experimental studies of the
spectrum of 4He can be found in Ref. [5]. Valuable infor-
mation about the nature of the resonance is given by the
transition form factor FMðqÞ measured in electron scatter-
ing experiments [4Heðe; e0Þ4He�] at various momentum
transfers q. Similarly to the case of the elastic form factor,
the q dependence of FM reflects the dynamics at various
interaction ranges.

The progress in ab initio few-body methods allows us
today to obtain accurate results for observables in light
nuclear systems using realistic potential models (see the

review in Ref. [6]). In recent years the debate regarding
potential models has been boosted, especially after the
introduction of the effective field theory (EFT) strategy
in nuclear physics [7]. At present, both phenomenological
realistic and chiral EFT potentials are used in ab initio
calculations, but large differences are found only for very
few observables, e.g., for the polarization observable Ay of

p-3He scattering [8]. In this Letter, we point out that the
calculated 4He isoscalar monopole resonance transition
form factor FMðqÞ depends dramatically on the nuclear
Hamiltonian. Thus, it can serve as a kind of prism to
distinguish among nuclear force models.
Main results.—The isoscalar monopole strength

SMðq;!Þ is in general a function of q and the energy
transfer !. It is given by

SMðq;!Þ ¼
ZX

dnjhnjMðqÞj0ij2�ð!� En þ E0Þ

¼ � 1

�
Imh0jMyðqÞ

� 1

!�H þ E0 þ i�
MðqÞj0i; (1)

where j0i, jni and E0, En are eigenfunctions and eigenval-
ues of the nuclear Hamiltonian H, and

M ðqÞ ¼ Gs
EðqÞ
2

XA
i

j0ðqriÞ (2)

is the isoscalar monopole operator. Here Gs
EðqÞ ¼

Gp
EðqÞ þGn

EðqÞ is the nucleon electric isoscalar form factor
[9], ri is the nucleon’s position, and j0 is the spherical
Bessel function of 0th order. The monopole strength can be
written as a sum of a resonance term SresM and a nonresonant

background contribution SbgM,
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SMðq;!Þ ¼ SresMðq;!Þ þ SbgMðq;!Þ: (3)

For a narrow resonance one defines the resonance transi-
tion form factor

jFMðqÞj2 ¼ 1

Z2

Z
d!SresMðq;!Þ: (4)

In Fig. 1, we show results for FMðqÞ with two different
Hamiltonians including realistic three-nucleon forces
(3NFs) in comparison to experimental data from inelastic
electron scattering [4,10,11]. As Hamiltonians we use
(i) the Argonne V18 (AV18) [12] NN potential plus the
Urbana IX (UIX) [13] 3NF, (ii) an EFT based potential,
where we take the NN potential [14] at fourth order
(N3LO) in the chiral expansion augmented by a 3NF at
order N2LO [15]. The Coulomb potential is taken into
account in all calculations. Both the EFT and the AV18
NN potentials reproduce the NN scattering phase shifts
with high precision (�2=datum�1). In the EFT calcula-
tions, two different parametrizations of the 3NF have been
used, leading to the red band in Fig. 1. The chiral low
energy constants cD and cE have been determined either by
setting cD to a reasonable value and then fitting cE to the
three-nucleon binding energies [15] (cD ¼ 1 and cE ¼
�0:029) or by fitting to the 3H binding energy and beta
decay [16] (cD ¼ �0:2 and cE¼�0:205). We also display
the result of a previous calculation by Hiyama et al. [17],
with the AV8’ potential, a reduced version of AV18, and a
simplified central 3NF, fitted to the binding energy of 3H.
All three Hamiltonians reproduce the 4He experimental
binding energy within one percent. Surprisingly, the
results for FMðqÞ strongly depend on the Hamiltonian.
Furthermore, the realistic Hamiltonians fail to reproduce
the experimental data. In particular, this is true for the EFT

forces that predict a transition form factor twice as large as
the measured one.
In contrast, the realistic Hamiltonians lead to rather

similar results for the elastic form factor FelðqÞ of 4He,
defined as

FelðqÞ ¼ 1

Z
h0jMðqÞj0i: (5)

In Fig. 2, FelðqÞ is shown for the AV18þ UIX model and
for the chiral EFT potentials. The fact that the results do
not differ significantly is not very surprising, since both
Hamiltonians give a very similar result for the radius:
1.432(2) fm [18] for AV18þ UIX and 1.464(2) fm for
N3LO plus theN2LO of Ref. [16], which is not far from the
experimental value of 1.463(6) fm (obtained from the
charge radius of Ref. [19] as explained in Ref. [20]).
Also shown in Fig. 2 is the result by Viviani et al. [21]
with theAV18þ UIX potential, which is indistinguishable
from ours, proving the level of accuracy of contemporary
four-body calculations.
Calculational method.—Our calculations are based on

the diagonalization of the Hamiltonian on a square inte-
grable hyperspherical harmonics (HH) basis. The HH con-
vergence is accelerated using the Suzuki-Lee unitary
transformation, which then leads to the effective interac-
tion HH (EIHH) method [22,23]. The high accuracy of this
approach can be inferred from the benchmark results in
Ref. [24] and also here from Table I, where we present the
binding energies of three- and four-body nuclei obtained
from EFT potentials including 3NFs. We agree with other
methods at the 10 keV level.
Results forSMðq;!Þ are often obtainedby discretizing the

continuum, where the Hamiltonian is represented on
a finite basis of square integrable functions and is then
diagonalized to obtain the eigenvalues e� and eigenfunctions
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FIG. 1 (color online). Theoretical transition form factor
jFMðq2Þj2 with Gn

E ¼ 0 calculated with various force models:

AV18þ UIX (full line), N3LOþ N2LO (red band), result from
Ref. [17] (dot-dashed line). Data from Frosch et al. [10],
Walcher [4], and Köbschall et al. [11].
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FIG. 2 (color online). Elastic form factor jFelðq2Þj of 4He
calculated with various force models: AV18þ UIX (full line),
N3LOþ N2LO (red band), result from Ref. [21] with AV18
+UIX (dot-dashed line). Data from Frosch et al. [36].
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j�i. In this way one achieves an ill defined discretized
representation of SMðq;!Þ. On the contrary in the Lorentz
integral transform (LIT) approach [26,27] a continuum dis-
cretization can be properly used to reach the correct contin-
uum spectrum (for various benchmark tests of the LIT
approach we refer the reader to Ref. [27]).

In the LIT case one has

LMðq;�;�Þ ¼ � 1

�
Imh0jMyðqÞ

� 1

��H þ E0 þ i�
MðqÞj0i; (6)

where � is finite [compare with Eq. (1)]. It is easy to
prove that LMðq; �;�Þ is connected to SMðq;!Þ by an

integral transform with a Lorentzian kernel Kð!;�;�Þ ¼
�
�

1
ð!þE0��Þ2þ�2 ,

LMðq;�;�Þ ¼
Z

d!Kð!;�;�ÞSMðq;!Þ: (7)

Since � is finite the calculation ofLMðq;�;�Þ is a bound-
state-like problem and thus it is legitimate to represent the
Hamiltonian on a basis of square integrable functions,
which then leads to the following expression:

LMðq;�;�Þ ¼ �

�

XN
�¼1

jh�jMðqÞj0ij2
ð�� e� þ E0Þ2 þ �2

: (8)

The number of basis functions N depends in our EIHH
calculation on the maximal value Kmax of the HH grand
angular momentum quantum number K. Note that the set
(e�, j�i) is � independent, but that the convergence ofLM
is strongly correlated with �: if � is lowered a higher
density of states is needed; hence, Kmax and thus N have
to be increased. In our present case we reached conver-
gence of LM with � as small as 5 MeV employing more
than 105 states j�i. Even if this is not sufficient to resolve
the 4He� resonance width of 270 keV, we are nevertheless
able to determine the resonance energy ER. In fact our
discrete spectrum shows as the first excitation above the
4He ground state a very pronounced state with strength

s1ðqÞ ¼ jh1jMðqÞj0ij2; thus, we identify the correspond-
ing energy e1 with ER. We find the following results: ER ¼
�7:40ð20Þ MeV (AV18þUIX) and ER¼�7:50ð30ÞMeV
(N3LOþ N2LO). Note that error estimates are made by
studying the EIHH convergence, i.e., the Kmax dependence
of ER and that the ER value for N3LOþ N2LO is obtained
extrapolating to higher Kmax with an exponential ansatz
EðKmaxÞ ¼ E1 þ ae�bKmax as in Ref. [28].
In general one obtains the full strength Sðq;!Þ from the

inversion of a converged LIT, but one has to be aware that
structures much smaller than � cannot be resolved and thus
a regularization procedure has to be used [29,30]. Our
standard inversion method consists in an expansion of the
response on a set of I continuous functions and in fitting the
calculated LMðq;�;�Þ on the corresponding linear com-
binations of the transformed basis functions [30]. Note that
the regularization consists in the fact that I should not
become so large that structures much smaller than � appear
in the inversion result. We implement many different basis
sets and choose the best fit for a given I [for example, we
use basis sets of the form E� expð��E=iÞ with i ¼ 1; :::; I
and different� values;� is known from threshold behavior
of the response, e.g., � ¼ 1=2 for SM]. For example, such
a calculation has been made in Refs. [31,32] for the full
4He longitudinal response beyond the 4He� resonance.
In the presence of a narrow resonance, as in our case, an

explicit resonance should be added to the basis, e.g., a
Lorentzian with free parameters 	 and !R: ½ð!�!RÞ2 þ
ð	=2Þ2��1. If the LIT is determined with a sufficiently
small �, then the position, width, and strength of the
resonance can be determined in the inversion [33]. If we
proceed in this way in our present case, imposing
!R ¼ ER, we obtain the best fits with 	 ! 0. This reflects
the absence of states j�i in the vicinity of ER. We can
nonetheless determine, besides ER, also the resonance
strength fRðqÞ. For this purpose we note that the above
defined strength s1ðqÞ is equal to the sum of fRðqÞ and a
background contribution. Thus, formally, we can separate
the resonance contribution from LM:

Lbg
Mðq;�;�Þ ¼ LMðq;�;�Þ � �

�

fRðqÞ
ð�� ER þ E0Þ2 þ �2

:

(9)

Now we proceed as follows. We assume a value for
fRðqÞ and allow a basis function of Lorentzian shape
centered at ER with 	 ¼ 100 keV in the inversion. If the
trial value for fRðqÞ is too small (large) one finds an
inversion with a positive (negative) resonant structure.
The case where this vanishes corresponds to the correct
value of the transition form factor jFMðqÞj2 ¼ fRðqÞ=Z2

and the inversion result is just S
bg
Mðq;!Þ (see Fig. 3). We

would like to emphasize that the results are almost 	
independent so long as 	 remains small enough (0< 	 �
200 keV) that the Lorentzian approximates sufficiently
well a � function. For the AV18þ UIX potential the

TABLE I. Ground state energies in MeV for 3H, 3He, and 4He
with N3LO [14] and N2LO (parametrizations from Ref. [15] or
Ref. [16]). Comparison of present results (EIHH) with no core
shell model (NCSM) and hyperspherical harmonics (HH) results.

3NF from Ref. [15] EIHH NCSM [15] HH [25] Nature

3H �8:474ð1Þ �8:473ð5Þ �8:474 �8:48
3He �7:734ð1Þ �7:733 �7:72
4He �28:357ð7Þ �28:34ð2Þ �28:37 �28:30

3NF from Ref. [16] EIHH NCSM [16] Nature

3H �8:472ð3Þ �8:473ð4Þ �8:48
3He �7:727ð4Þ �7:727ð4Þ �7:72
4He �28:507ð7Þ �28:50ð2Þ �28:30
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relative size of the background reduction, about 8%, is
roughly q independent. For the N3LOþ N2LO interac-
tions the reduction varies between 13% for q¼0:25 fm�1

and 22% for q ¼ 2 fm�1.

In Fig. 3(b), the nonresonant monopole strength S
bg
M is

shown on a larger energy range, into the far continuum
region. One sees quite a difference between the results
with the EFT and the AV18þ UIX forces. The former
leads to a lower low-energy peak and tail than the latter.
These results show the power of the LIT approach,
which enables one to calculate the strength in the far
four-body continuum by reducing a scattering-state prob-
lem to a bound-state problem in a rigorous way.

Analysis of the results.—The main findings of this
Letter are the dramatic sensitivity of FMðqÞ to the nuclear
Hamiltonian and the large deviations of realistic calcula-
tions from the available experimental data. Even though
one can contemplate the possibility of systematic experi-
mental errors, the fact that the experimental results of
Fig. 1 correspond to three different sets of data, makes it
less likely. Thus we will now list possible sources for
theoretical uncertainties. (i) Is our EIHH expansion suffi-
ciently convergent? As shown in Table II for a q value of
1:01 fm�1, we find an excellent convergence for both Fel

and s1. (ii) Are there relevant two-body corrections to the
one-body operator of Eq. (2)? Such corrections are of
relativistic order and appear also in EFT only at fourth
order [34] {also for FelðqÞ such two-body terms are neg-
ligible below q ¼ 2 fm�1 [21]}. (iii) Can additional 3NF
terms change the picture? This is not excluded; however,
we notice that the 3NF effect at N2LO on FMðqÞ is rather
mild (about 10%). (iv) Does the improper theoretical
resonance position ER affect the FMðqÞ result? Both of
our potential models (AV18þ UIX, N3LOþ N2LO)
overestimate ER by almost the same amount (about
700 keV), but still lead to quite different transition form
factors. On the other hand, the simplified force model
used by Hiyama et al. [17] reproduces the correct ER

within 100 keV, and also leads to a much better descrip-
tion of FMðqÞ. One can envisage a correlation between
the ability of a model to reproduce ER and FM. In fact, if
one considers that FM is the Fourier transform of the
transition density from 4He to 4He�, one can imagine
that small differences in ER are reflected in the resonant
wave functions and yield larger differences in the tran-
sition density. Similar conclusions have been drawn in
Ref. [35] in the study of p-3H scattering. However, the
resonant behavior of the nuclear scattering amplitude is
barely visible in the data, in contrast to the electromag-
netic probe that amplifies the resonance signal consider-
ably (see Fig. 1 of Ref. [11]).
Conclusions.—We have calculated the isoscalar mono-

pole 4He ! 4He� transition form factor FMðqÞ with
realistic nuclear forces (N3LOþ N2LO, AV18þ UIX).
Unexpectedly the results are strongly dependent on the
Hamiltonian. Therefore this observable is ideal for testing
nuclear Hamiltonians. As surprising as the large potential
model dependence is the fact that our FM results are at
variance with the experimental data; particularly large
differences are found in the case of the chiral forces. It is
very unlikely that corrections to the isoscalar monopole
operator can lead to large effects. In order to clarify the
situation it is highly desirable to have a further experimen-
tal confirmation of the existing data and in particular with
increased precision. On the theory side further insight
could be gained by an analysis of sum rules, transition
densities, effects of D-wave components, and different
3NFs. These issues will be the subject of future studies.
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FIG. 3 (color online). (a) Sbg
Mðq;!Þ at q ¼ 1:5 fm�1 for

AV18þ UIX obtained with different values of fR (see text):
fR ¼ jFMðqÞj2 (full line), fR ¼ 0:99jFMðqÞj2 (dashed line),
fR ¼ 1:01jFMðqÞj2 (dot-dashed line). (b) Nonresonant back-

ground contribution Sbg
Mðq;!Þ: AV18+UIX (full line), N2LOþ

N3LO (red band).

TABLE II. jFelj and s1 ¼ jh1jMðqÞj0ij2 for q ¼ 1:01 fm�1 as
a function of the grandangular momentum Kmax with N3LOþ
N2LO [16].

Kmax 12 14 16 18

jFelj 0.6248 0.6244 0.6242 0.6241

104s1=4�Z
2 4.59 4.75 4.85 4.87
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Ch. Schmitt, and V.H. Walther, Nucl. Phys. A405, 648
(1983).

[12] R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev.
C 51, 38 (1995).

[13] B. S. Pudliner, V. Pandharipande, J. Carlson, and R.
Wiringa, Phys. Rev. Lett. 74, 4396 (1995).

[14] D. R. Entem and R. Machleidt, Phys. Rev. C 68, 041001
(R) (2003).
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