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Heavy nuclei exhibit a crossover from vibrational to rotational collectivity as the number of neutrons or
protons increases from shell closure towards midshell, but the microscopic description of this crossover
has been a major challenge. We apply the shell model Monte Carlo approach to families of even-even
samarium and neodymium isotopes and identify a microscopic signature of the crossover from vibrational
to rotational collectivity in the low-temperature behavior of {(J?)7, where J is the total spin and 7 is the
temperature. This signature agrees well with its values extracted from experimental data. We also
calculate the state densities of these nuclei and find them to be in very good agreement with experimental
data. Finally, we define a collective enhancement factor from the ratio of the total state density to the
intrinsic state density as calculated in the finite-temperature Hartree-Fock-Bogoliubov approximation.
The decay of this enhancement factor with excitation energy is found to correlate with the pairing and
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shape phase transitions in these nuclei.
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Introduction.—For microscopic calculation of the statis-
tical and collective properties of atomic nuclei, and in
particular level densities, the shell model Monte Carlo
(SMMC) method [1,2] has proved to be particularly useful
[3-8]. This method enables fully correlated configuration-
interaction (CI) shell-model calculations in much larger
configuration spaces than those that can be treated by
conventional diagonalization methods. It has been
extended to heavy nuclei and applied to the well-deformed
rare-earth nucleus '°Dy by implementing a proton-
neutron formalism and a stabilization technique in the
canonical ensemble [9].

Here we use the SMMC approach to study microscopi-
cally families of even-even rare-earth isotopes. Such iso-
topic families exhibit a crossover from vibrational to
rotational collectivity as the number of neutrons increases
from shell closure towards the midshell region. This cross-
over corresponds, in the thermodynamic limit, to a phase
transition from spherical to deformed nuclei. The micro-
scopic description of such a crossover in the framework of
a truncated spherical shell model has proved challenging
because the dimensionality of the many-particle shell-
model space required to describe heavy rare-earth nuclei
is many orders of magnitude beyond the capability of
conventional diagonalization methods.

The SMMC approach, while capable of treating large
model spaces, does not provide the detailed spectroscopic
information that is often used to identify the type of nuclear
collectivity. Here we show that the crossover from
vibrational to rotational collectivity can be alternatively
identified by the low-temperature behavior of (J?)7, where
J is the total nuclear spin and is 7 the temperature.
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PACS numbers: 21.60.Cs, 21.10.Ma, 21.60.Ka, 27.70.+q

This thermal observable can be calculated in the SMMC
method, and we use it to demonstrate that the vibrational-
to-rotational crossover in families of even-even samarium
and neodymium isotopes can be described microscopically
in the framework of a truncated spherical shell-model
approach. Furthermore, we find that the temperature
dependence of (J?); agrees well with its values extracted
from experimental data. We also calculate the total
state densities p(E,) for the corresponding samarium iso-
topes and find them in very good agreement with
experimental state densities.

Vibrational and rotational collective states account for
a significant fraction of the total state density up to
moderate excitation energies, and their contribution is
described by the so-called collective enhancement factor.
Collective enhancement is one of the least understood
topics in the study of level densities [10]. Both empirical
and combinatorial models of level densities often
use phenomenological enhancement factors [11,12].
Although various expressions for vibrational and rotational
collective enhancement factors are available in the litera-
ture [10,13], it is highly desirable to study such enhance-
ment factors microscopically. In particular, little is known
about the decay of collectivity with excitation energy
although it plays an important role in fission reactions
[10]. Here we define a total collective enhancement factor
as the ratio between the total state density and the intrinsic
state density obtained within the thermal Hartree-Fock-
Bogoliubov (HFB) approximation and study microscopi-
cally the decay of this enhancement factor with excitation
energy. We find that the damping of the vibrational and
rotational collectivity with excitation energy is correlated,
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respectively, with the pairing and shape phase transitions in
these nuclei.

Model space and interaction.—Here we use the same
single-particle model space as in Ref. [9], namely, 0g7/,,
lds), 1d3/3, 2512, Ohyy /2, 1f7/, for protons, and Ok s,
Ohgsas 1f7/25 1fs52, 2P3s25 2P1y2> Oly3pp, and 1gg,, for
neutrons. This model space is larger than one major shell
for both protons and neutrons, and was determined by
examining the occupation probabilities of spherical orbi-
tals for well-deformed rare-earth nuclei [9].

The single-particle energies in the CI shell-model
Hamiltonian are determined so as to reproduce the
single-particle energies of a spherical Woods-Saxon plus
spin-orbit potential in the spherical Hartree-Fock approxi-
mation. The effective interaction consists of monopole
pairing and multipole-multipole terms (quadrupole, octu-
pole, and hexadecupole) [9]
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Here :: denotes normal ordering, P} = St (—) X

aljm;valj,m;y are monopole pair operators for
protons (v = p) and neutrons (v =n), while

Oy, = ﬁ:‘fzahﬁa” %Yﬂl.}.bxalja;y X &ajb;v]()\) with
djy = (=) *™ma;_, is the 2*-pole operator. The pairing
coupling strengths are parametrized by g, = yg, with
g, =10.9/Z and g, = 10.9/N (Z and N are the number
of protons and neutrons, respectively). The parameters g,
are determined so that the pairing gaps calculated in the
number-projected BCS approximation could reproduce the
experimental even-odd mass differences for spherical
nuclei in the mass region [9]. The factor v is an effective
suppression factor of the overall pairing strength, part of
which may be ascribed to the fluctuations induced by
pairing correlations beyond the number-projected BCS
approximation. The multipole-multipole interaction
terms we include in (1) are the quadrupole, octupole, and
hexadecupole terms (i.e., A =2, 3, 4). Their strengths
are given by y, = xk,, where y is determined self-
consistently [14] and k, are renormalization factors
accounting for core polarization effects.

In general, the moment of inertia J of the ground-state
band for a deformed nucleus is sensitive to vy, while the
slope of Inp(E,) is sensitive to k, [9]. In Ref. [9] we have
adopted the values y = 0.77, k, = 2.12, k3 = 1.5, and
k, = 1 for '“Dy. We have studied families of samarium
(*8-155Sm) and neodymium ('437152Nd) isotopes (both
even and odd) and found that a more appropriate choice
to reproduce the overall experimental systematics is k3 = 1,
while y and k, are parametrized by a weak and smooth
N dependence 7y = 0.72 — 0.5/[(N —90)?> + 5.3] and
ky = 2.15 4+ 0.0025(N — 87)>.

The crossover from vibrational to rotational collectivity.—
At low temperatures, the observable (J?); is dominated by
the ground-state band. Assuming a vibrational or rotational
ground-state band with an excitation energy E,+ of the first
excited J = 27 state, we find [9,15]

ot /T

o (W

vibrational band
I = ] (2)

E,+
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Thus, the low-temperature behavior of (J?) is sensitive to
the type of collectivity and can be used to distinguish
between vibrational and rotational nuclei.

In Fig. 1, we show the SMMC results (open circles) for
(J*); at low temperatures for the even-even samarium
isotopes *7154Sm. The '“Sm nucleus exhibits a soft
response to temperature, typical of a vibrational nucleus.
Indeed, the vibrational band formula in Eq. (2) can be well
fitted to the SMMC results for (J%); with E;Lb = (0.538 =
0.031 MeV, in agreement with the experimental value of
EJ? = 0.550 MeV. In the heavier samarium isotopes, the
low-temperature response of (J?); becomes increasingly
linear, suggesting the presence of stronger rotational col-
lectivity. Fitting the rotational band formula in Eq. (2) to
the SMMC results for '3*Sm, we find ER = 0.087 +
0.006 MeV, consistent with the experimental value of
E;’ip = (0.082 MeV—an evidence for the rotational nature
of this nucleus. Thus our SMMC results for (J?); repro-
duces the proper dominant collectivity in both *8Sm and
154Sm, demonstrating the crossover from vibrational to
rotational collectivity in the even-even isotopic chain.

The experimental values of (J?); can be extracted at
sufficiently low temperatures from
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FIG. 1. (J?); as a function of temperature in a family of even-
even samarium isotopes *$7154Sm. The SMMC results (open
circles) are compared with the experimental results deduced
from known low-lying levels (dashed lines) and from the addi-
tional contribution of higher levels described by an experimental
BBF level density (solid lines).
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where the summations are carried over the experimentally
known low-lying energy levels i with excitation energy
E; and spin J;. These experimental estimates are shown by
the dashed lines in Fig. 1 for the even-even '“8~13*Sm
isotopes. However, since the experimental level scheme
is incomplete above a certain energy, Eq. (3) underesti-
mates the experimental value of (J?); above a certain
temperature. We can obtain a more realistic estimate by
using the discrete sum over energy levels up to a certain
energy threshold E (below which the experimental spec-
trum is complete), and estimate the contribution of levels
above E) in terms of an average state density p(E,) that is
parametrized with the help of available experimental data.
We then have
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with  Z(T) = ¥V Q2J; + De B/T + [¥ dE p(E,)e /T
is the corresponding experimental partition function.
Here, (J?);;_is the average value of J? at a given excitation
energy E . For the level density we use a backshifted Bethe
formula (BBF) with single-particle level density parameter
a and backshift parameter A, extracted from the neutron
resonance data (when available) and counting data at low
energies. Using the spin-cutoff model (obtained assuming
random coupling of the individual nucleon spins [16]), we
have (J%)p = 3(J2)g, = 30*(E,), where o? is the spin-
cutoff parameter. The latter is estimated from o = IT/h?
using T = [(E, — A)/a]'/? and a rigid-body moment of
inertia J =~ 0.0154%3h2. The corresponding results for
(J%)7, shown by the solid lines in Figs. 1, are in reasonable
agreement with the SMMC results along the crossover
from *3Sm to *Sm.

In Fig. 2 we show similar results for the low-temperature
behavior of (J?); for the even-even '*4~152Nd isotopes. The
(J*); response at low temperatures—soft in **Nd—
becomes more rigid in the heavier neodymium isotopes
to assume an approximately linear form in °Nd and
I152Nd. Fitting the SMMC results to the vibrational band
formula in Eq. (2) for '“Nd we find E}P = 0.702 +
0.062 MeV, in agreement with the experimental value of
EJ? = 0.697 MeV. Using the rotational band formula,
we find EX' =0.132 +0.012 MeV for '"Nd (E5¥ =
0.130 MeV) and EX = 0.107 £ 0.006 MeV  for 52Nd
(ES? = 0.073 MeV). These results confirm that our
spherical shell-model Hamiltonian is capable of describing
the crossover from vibrational collectivity in '4*Nd to rota-
tional collectivity in '’°Nd and '"2Nd.
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FIG. 2. {J*)r as a function of temperature in a family of even-
even neodymium isotopes “47132Nd. Symbols and lines are as
in Fig. 1.

The determination of the ground-state energy for even-
even isotopes.—An accurate estimate of the ground-state
energy E, is crucial in obtaining the excitation energy
E. = E — E, necessary for the calculation of the state
density. Because of the low excitation energies in the heavy
rare-earth nuclei, we have carried out calculation of the
thermal energy up to an inverse temperature value of
B(=1/T) ~ 20 MeV ™! [9]. The ground-state energy can
then be determined as follows. In vibrational and rotational
nuclei we have used expressions for the low-temperature
energy in the ground-state band approximation [9,15]

71:2

E(T) ~ {Eo + 5E;+ lf,% vibrational band

e (5)
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rotational band

to extract the ground-state energy E,. For other nuclei in
the crossover we have estimated E, by taking an average
value of E(T) at sufficiently low temperatures.

State densities: Theory and experiment.—In Fig. 3 we
show the total state densities as a function of the excitation
energy E, for the even-even samarium isotopes
(148=154Sm). The SMMC state densities (circles), calcu-
lated using the methods of Refs. [3,9], are compared with
experimental data that consist of level counting data at low
excitation energies (histograms) and, when available,
neutron resonance data at the neutron threshold energy
(triangles). For nuclei with neutron resonance data, we
have also included a BBF state density [17] (solid lines)
whose parameters a and A are determined from the level
counting and the neutron resonance data [18]. For the
SMMC state densities of the even-even '*4~152Nd isotopes
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FIG. 3 (color online). Total state densities in the even-even
148=1549m isotopes. The SMMC results (open circles) are com-
pared with level counting data (histograms), neutron resonance
data (triangles) and the BBF parametrization of the experimental
data (solid lines). Also shown are the HFB level densities
(dashed lines). The neutron and proton pairing transitions are
indicated by arrows and the shape transition by a thick arrow.

(not shown) we find similar agreement with experimental
data.

For comparison, we also show in Fig. 3 the level density
purp calculated from the finite-temperature HFB approxi-
mation (dashed lines) using the same Hamiltonian. The
HFB level density accounts only for intrinsic states, and the
enhancement observed in the SMMC state density origi-
nates in rotational bands that are built on top of these
intrinsic states as well as in vibrational collectivity that is
missed in the HFB approximation. The kinks in pypg are
associated with the proton and neutron pairing phase tran-
sitions (arrows) and the shape phase transition (thick
arrow). '*8Sm is spherical in its ground state and undergoes
pairing transitions only. '°Sm has a nonzero deformation
in its ground state and undergoes also a shape transition to
a spherical shape at E, = 12.5 MeV. The ground-state
deformation continues to increase with mass number in
1528m and *Sm, and the shape transitions occur at higher
excitation energies (outside the energy range shown in the
figure).

Collective enhancement factors.—The enhancement of
level densities due to collective effects is difficult to cal-
culate microscopically and is often modeled by phenome-
nological formulas. Here we propose to define a collective
enhancement factor by the ratio K = pgyvc/Purs, a
quantity that we can extract directly in our microscopic
CI shell-model approach. In Fig. 4, we show K (on a
logarithmic scale) versus excitation energy FE, for the
same samarium isotopes of Fig. 3 but up to higher excita-
tion energies of £, ~ 30 MeV.

148Sm is spherical in its ground state and the observed
collective enhancement must be due to vibrational collec-
tivity. This collectivity disappears (i.e., K = 1) above the
proton pairing transition. The other samarium isotopes

0 10 20 30 10 20 30
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FIG. 4. Total collective enhancement factor K (see text) in the
even-even ¥7154Sm isotopes as a function of excitation energy
E.. Arrows are as in Fig. 3.

shown in Fig. 4 are deformed in their ground state and K
exhibits a local minimum above the pairing transitions,
which we interpret as the decay of vibrational collectivity.
The rapid increase of K above the pairing transitions
originates in rotational collectivity. This collectivity
reaches a plateau as a function of excitation energy and
then decays gradually to K ~ 1 in the vicinity of the shape
transition (thick arrow) when the nucleus becomes spheri-
cal and no longer supports rotational bands.

Conclusions.—We have carried out SMMC calculations
for isotopic families of the even-even rare-earth nuclei
1481545 m and '#4~152Nd. Using the observable (J*);, whose
low-temperature behavior is sensitive to the specific type of
nuclear collectivity, we have demonstrated that a truncated
spherical shell-model approach can describe the crossover
from vibrational to rotational collectivity in heavy nuclei.
We have also calculated the total SMMC state densities and
found them to be in very good agreement with experimental
data. We have extracted microscopically a collective
enhancement factor defined as the ratio between the
SMMC and HFB state densities. The damping of vibra-
tional and rotational collectivity seems to correlate with the
pairing and shape phase transitions, respectively.
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