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We present a new method for determining pulse imperfections and improving the single-gate fidelity in

a superconducting qubit. By applying consecutive positive and negative � pulses, we amplify the qubit

evolution due to microwave pulse distortions, which causes the qubit state to rotate around an axis

perpendicular to the intended rotation axis. Measuring these rotations as a function of pulse period allows

us to reconstruct the shape of the microwave pulse arriving at the sample. Using the extracted response to

predistort the input signal, we are able to reduce the average error per gate by 37%, which enables us to

reach an average single-qubit gate fidelity higher than 0.998.
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A basic requirement for building a quantum information
processor is the ability to perform fast and precise single-
and two-qubit gate operations [1]. For qubits defined in
superconducting circuits, much work has been done to
improve the quality of both single-qubit [2–4] and two-
qubit gate operations [5–11]. Still, gate fidelities need to
improve further to reach error rates small enough for practi-
cally implementing fault-tolerant quantum computing with
error-correcting protocols [12,13]. In most qubit architec-
tures, many single-qubit operations are implemented by
applying short microwave pulses resonant with the qubit
transition frequency. The phase of the microwave pulse
controls the rotation axis in the x-y plane of the Bloch
sphere, whereas the pulse amplitude and duration set the
rotation angle. A difficulty with this approach is that the
single-qubit gate fidelity becomes highly susceptible to any
impedance mismatch in the microwave line between the
signal generator and the qubit, since such imperfections
lead to pulse distortions.

Consider the microwave pulse shown in Fig. 1(a), which
initially has a Gaussian-shaped envelope AIðtÞ with a well-
defined phase. When passing from the generator to the
device, the pulse gets distorted, which deforms the enve-
lope in AIðtÞ and adds a quadrature component AQðtÞ. The
pulse was intended to perform a rotation around the x axis
of the Bloch sphere [see Fig. 1(b)], but the quadrature
components present in the distorted pulse shape will
change the rotation axis and generate an error in the final
qubit state. The systematic errors due to the nonzero AQðtÞ
are particularly problematic for qubit control, since they
will bring the qubit state out of the y-z plane expected from
a pure rotation around the x axis. In the following, we will

focus exclusively on determining and eliminating these
unwanted quadrature components.
In general, pulse distortions are described by the transfer

functionH , which is the frequency-domain representation
of the system’s impulse response hðtÞ. If the transfer func-
tion is known, it is possible to correct pulse imperfections
using digital signal processing techniques. By numerically
applying the inverseH�1 to the input signal x, the pulse is
predistorted in precisely the right way to give the correct
signal H ½H�1½x�� ¼ x at the device. The difficulty lies
in obtaining H . Since superconducting qubits operate at
millikelvin temperatures inside a dilution refrigerator, it is
generally not possible to probe the signal arriving at the
qubit directly with conventional instruments such as a
network analyzer or a sampling oscilloscope.
In this work, we take a different approach and use the

qubit’s response to various pulses as a probe for determin-
ing H [14]. We have designed and implemented a pulse
sequence consisting of pairs of positive and negative �
pulses around the x axis; the reversing of the pulse direc-
tion amplifies the quadrature component of the signal
and causes the qubit to slowly oscillate around the y axis.

FIG. 1 (color online). (a) Distortion of a Gaussian-shaped
microwave pulse. (b) Bloch sphere describing the qubit dynam-
ics in the rotating frame.
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By measuring the rotation frequency for different pulse
periods, we are able to extract the time dependence of those
quadrature components. From the obtained signal we con-
struct the inverse transfer function H�1 and use it to
numerically predistort the input signal. The resulting pulse
shapes give a significant reduction in the gate error rate, as
determined in a randomized benchmarking experiment
[15]. With optimized pulse shapes, we extract an average
gate fidelity higher than 99.8%, which, to our knowledge,
is the highest gate fidelity reported so far for a super-
conducting qubit.

We use a flux qubit [16], consisting of a superconducting
loop interrupted by four Josephson junctions. Biased at the
optimal operation point, the qubit’s energy relaxation time
is T1 ¼ 12 �s, and the dephasing time is T�

2 ¼ 2:5 �s (see
Ref. [17] for a detailed device description). The device is
embedded in a SQUID, which is used as a sensitive mag-
netometer for qubit readout [18]. We implement the read-
out by applying a short current pulse to the SQUID
to determine its switching probability Psw. When statically
biasing the qubit loop at half a flux quantum �0=2 (�0 ¼
h=2e), the Hamiltonian becomes H ¼ � @

2 ½wqb�̂z þ
AðtÞ�̂x�, where wqb=2� ¼ 5:4 GHz is the qubit frequency

and AðtÞ ¼ AIðtÞ cosð!tÞ þ AQðtÞ sinð!tÞ is the drive field.
The drive is generated by applying an oscillatory flux�ðtÞ
to the qubit loop using an on-chip antenna, giving AðtÞ ¼
2IP�ðtÞ=@, with IP ¼ 180 nA being the loop’s persistent
current. When driving the qubit resonantly (! ¼ wqb) and

going to the rotating frame, we get

H ¼ � @

2
½AIðtÞ�̂rot

x þ AQðtÞ�̂rot
y �; (1)

which is the Hamiltonian depicted in the Bloch sphere in
Fig. 1(b).

The microwave pulses are created by generating in-phase
[AIðtÞ] and quadrature [AQðtÞ] pulse envelopes using a

Tektronix 5014 arbitrary waveform generator (AWG), and
sending them to the internal in-phase and quadrature mixer
of an Agilent 8267D microwave generator. We write the
total transfer function from generator to qubit as H ¼
H extH int, where H ext refers to imperfections in the
electronics and coaxial cables outside the cryostat, and
H int describe signal distortion occurring inside the cryo-
stat, for example, from bonding wires or impedance mis-
matches on the chip. To ensure that the pulses we send to
the cryostat are initially free from distortion, we determine
H ext with a high-speed oscilloscope and use H�1

ext to
correct for imperfections in the AWG and in the in-phase
quadrature mixers [19,20]. The setup allows us to create
well-defined Gaussian-shaped microwave pulses with pulse
widths as short as tpw ¼ 2:5 ns [21].

To extract information aboutH int, we drive the qubit with
consecutive pairs of positive and negative � pulses in AIðtÞ,
separated by the pulse period T. The sequence is depicted in
Fig. 2(a), together with Bloch spheres describing the qubit
states at various points of the pulse sequence. Note that in

Fig. 2(a),we showanexampleof thedrivepulses that reach the
qubit, including a smallAQ distortion after each pulse to better

illustrate how the sequence works. The signal we create at the
generator does not have any quadrature components. Starting
with the qubit in the ground state, we apply a� pulse around x
to take the qubit to j1i [step I in Figs. 2(a) and 2(b)]. Next, the
AQ part, due to the pulse distortion, induces a small rotation �

around y, bringing the qubit state slightly off the south pole
(II). Thenegative� pulse then takes thequbit back towards the
north pole (III), but since this pulse is inverted, the following
AQ part rotates the state even further away from j0i (IV). After
the first two pulses, the qubit has acquired a rotation of 2�
around the y axis (V). The sequence is then repeated, and for
each pair of subsequent� pulses the qubit rotates another 2�.
Figure 2(c) shows the qubit state after the pulse sequence,

measured versus the number of pulses and the pulse period
T, and projected onto the three axes x, y, and z using
additional�=2 pulses to do state tomography before reading
out the qubit’s polarization [22]. There are clear oscillations
in the x and z components, verifying that the qubit indeed
rotates around the y axis despite the pulses being applied to
x. Note that the rotation frequency is relatively slow: it
typically takes a few hundred � pulses to perform one full
rotation around y. A striking feature of Fig. 2(c) is that the
oscillation frequency varies with pulse period all the way up
to T ¼ 25 ns, much longer than the pulse width tpw ¼
2:5 ns. This indicates that the quadrature distortions persist
for a substantial time after the pulse should have ended.

FIG. 2 (color online). (a) Pulse sequence used to probe quad-
rature components in the microwave pulses. (b) Bloch spheres
depicting the evolution of the qubit during the pulse sequence in
(a). The angle � is the quadrature rotation acquired per � pulse.
(c) Switching probability Psw after the pulse sequence in (a),
measured versus pulse period T and total number of pulses N,
and projected onto the three axis x, y, and z.
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To explain why the quadrature rotations depend on pulse
period, we need to understand what happens when the �
pulses start to overlap with the distortions of the previous
� pulses. Let us start by assuming that the � pulses
are instantaneous, and consider the qubit response to
the static quadrature distortion shown in Fig. 3(a), where
AQðtÞ remains constant at AQ=2� ¼ 0:4 MHz for 30 ns

after the � pulse in AIðtÞ at t ¼ 0. Figure 3(b) shows the
qubit quadrature rotation during the distortion, plotted
for different values of the pulse period T. If T is 30 ns
or longer [black circles in Fig. 3(b)], the qubit will con-
tinuously rotate in one direction during AQðtÞ, acquiring
a total rotation per pulse of �¼R

t¼30 ns
t¼0 AQðtÞdt�4:3 deg.

However, if the pulse period is only T ¼ 15 ns [green
squares in Fig. 3(b)], the second � pulse in AI at t ¼
15 nswill reverse the direction of the AQ-induced rotations

of the first pulse. The rotation per pulse � acquired with
T ¼ 15 ns ends up being zero, since the rotations during
the second half of AQðtÞ exactly cancel out the rotations

during the first half. For T ¼ 10 ns [blue diamonds in
Fig. 3(b)], there are two extra � pulses in AI occurring
during the distortions of the first pulse, and we end up with
� ¼ 1:4 deg. Note that we only consider the rotation due

to the distortion of the first � pulse; the total qubit rotation
will be a sum of the rotations from all pulses.
Having understood why � depends on pulse period T

for a given AQðtÞ, we now ask if we can invert the

problem: given a measurement of � as a function of T
such as the black trace in Fig. 3(c), can we extract the
pulse distortions AQðtÞ? To simplify the problem, we

discretize time in the smallest steps available with our
AWG, �t ¼ 1=ð1:2 GS=sÞ � 0:83 ns, and write AQðtÞ as
a vector ~Q ¼ ½Q1; Q2; . . . ; QN�, with Qn ¼ AQðn�tÞ. The
rotations �ðTÞ in Fig. 3(a) are measured with the same time

resolution, and in a similar fashion we write �ðTÞ as ~� ¼
½�1; �2; . . . ; �N�, �m ¼ �ðm�tÞ. Both vectors contain N ¼
30 ns=�t ¼ 36 elements. We still assume the � pulses
in AI to be instantaneous, occurring with a period of
m ¼ T=�t in the discretized time.
As explained previously, the � pulses will act to peri-

odically reverse the direction of the ~Q-induced rotations,

and the total rotation angle �m generated by ~Q becomes a
sum of forward and backward rotations, depending on the
period of the � pulses:

�m ¼ �t

"
Xm

n¼1

Qn �
X2m

n¼mþ1

Qn þ
X3m

n¼2mþ1

Qn � � � �
#

: (2)

We can write Eq. (2) as a system of linear equations
~� ¼ �tM ~Q, where M is a matrix with elements being
either 1 or �1 depending on the direction of rotation
[21]. By inverting the matrix, we get the quadrature dis-
tortions directly from the measured rotations �:

~Q ¼ M�1 ~�=�t: (3)

In the experiment, the � pulses have a finite width
tpw ¼ 2:5 ns, and the matrix M needs to be modified

slightly to account for the finite pulse duration [21]. In

Fig. 3(d), we show the extracted quadrature response ~Q,
calculated using Eq. (3) and the rotation data � from
Fig. 3(c). For reference we also plot the shape and ampli-
tude of the intended drive pulse AI, digitized at In ¼
AIðn�tÞ. The pulse has an amplitude of 200 MHz, giving
a � rotation in tpw ¼ 2:5 ns. The extracted quadrature

response ~Q has considerably lower amplitude, but keeps
oscillating for 25 ns after the main pulse ends.
Next, we use the measured response shown in Fig. 3(d)

to determine the transfer functionH int of the system [21].
With knowledge ofH , we can calculate the inverseH�1

and use it to predistort the input signal, with the aim of
reducing the quadrature distortions. The gray (magenta)
trace in Fig. 3(c) shows the quadrature rotations � for the
same sequence of positive or negative pulses, but this time
measured with a predistorted input signal. Compared to the
black trace, � has been significantly reduced for all values
of the pulse period T, thus validating our method for
extracting H . We attribute the rotations still present after

FIG. 3 (color online). (a) Constant quadrature distortion AQðtÞ
used to illustrate how the rotation angle depends on pulse period.
(b) Qubit quadrature rotation for the quadrature distortion shown
in (a), calculated with the pulse sequence from Fig. 2(a) and
plotted for a few different pulse periods T. (c) Quadrature
rotation � acquired per � pulse. The black points are extracted
from data similar to the measurement shown in Fig. 2(c). The
gray (magenta) points are the results using a predistorted
pulse shape, aimed at minimizing the quadrature distortion.
(d) Quadrature component AQ appearing at the sample when

applying a 2.5 ns wide Gaussian pulse AI at the input of the
experimental setup.
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predistortion to errors due to oversimplifications in the

linear model in Eq. (3) used to extract ~Q. It may be possible
to get a better estimate for AQ by calculating the qubit

response using the full dynamics of the Hamiltonian in
Eq. (1), but it would involve solving a system of 36 non-
linear equations, which computationally is much harder
than inverting the matrix M in Eq. (3).

Note that there may also be pulse distortions appearing in
the in-phase component AI. However, the consecutive posi-
tive and negative pulses in the sequence of Fig. 2(a) will
cancel the effect of any errors in the rotations around x, which
is also confirmed in the experiment [the y component in
Fig. 2(c) shows no oscillations]. This cancellation allows us
to exclusively target the AQ distortions.

Having determined a way to reduce quadrature distortions
and improve the microwave pulse shapes, we proceed to
characterize the qubit gate fidelity in our system. A conve-
nient way of testing single-qubit gates is to implement the
randomized benchmarking protocol (RBM) [15], where a
random sequence of � and �=2 pulses around the x and y
axes are applied to the qubit. If the pulses are imperfect, the
qubit will start to dephase as the pulse errors accumulate.
Figure 4(a) shows examples of decay traces, where the three
traces correspond to data measured with either full predis-
tortion (H ¼ H extH int), with predistortion only for the
room-temperature electronics (H ¼ H ext), or with no pre-
distortion at all. The pulses with full predistortion give a
significantly slower decay than those without; when fitting
to an exponential decay we find a decay constant of N ¼
537� 22 pulses, giving an average error per pulse of 1=N ¼
ð0:186� 0:008Þ%, which corresponds to a fidelity of
0.99814. The error rate achieved here is a few times lower
than the theoretical threshold of 0.75% required for imple-
menting fault-tolerant quantum computation with surface
codes [13,23].

In Fig. 4(b) we plot the average error per gate versus pulse
width tpw, with the pulse period set to T ¼ 3tpw. The predis-

torted pulses perform better for all pulse widths, showing that
the pulse shapes have improved and again confirming the

validity of our method for determining the transfer function
H int. The general trend is that the gate error is reduced for
shorter pulses; this decreases the total time ttotal ¼ NT of the
sequences, thereby reducing the errors due to loss of qubit
coherence. The relevant coherence time during the RBM
sequence is a combination of T1, T2, and the coherence
time during driven evolution; for simplicity, we plot the
expected error rate if the pulse errors were limited by T1 ¼
12 �s [dashed line in Fig. 4(b)]. This limit is a factor of 2
lower than our best results, indicating that the predistorted
pulses still contain some pulse imperfections. We speculate
that parts of the remaining errors are due to in-phase pulse
distortions, which are not targeted with the method presented
here. A similar scheme may be developed to investigate the
in-phase errors independently. Another complication is that,
in our system, T1 is strongly reduced when driving the qubit
continuously at Rabi frequencies above 100 MHz, probably
due to local heating [24]. This may contribute to pulse errors
for short pulses (where the drive amplitude A / 1=tpw
becomes large). At high drive amplitudes the Bloch-Siegert
shift will also start to introduce deviations from the rotating-
wave approximation in Eq. (1).
To summarize, we have demonstrated a new technique of

using a qubit to determine and correct microwave pulse
imperfections, which for this sample allowed us to reduce
the average error per gate by 37% and generate single-qubit
rotations with an average gate fidelity better than 0.998.
Even though there have been reports of superconducting
qubits in 3D cavities with coherence times approaching
100 �s [25,26], we note that we obtain a higher gate fidelity
in our system because we are able to create shorter pulses.
By encoding the pulse imperfections into a slow rotation
when applying many pulses, we are able to detect distor-
tions on a nanosecond time scale without the need of a fast
detector. This makes our method very general, and it can be
applied to any quantum computing architecture where
single-qubit gates are implemented by applying microwave
pulses at the qubit frequency.
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