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Using the algebraic Bethe ansatz in conjunction with a simple Monte Carlo sampling technique, we

study the problem of the decoherence of a central spin coupled to a nuclear spin bath. We describe in detail

the full crossover from strong to weak external magnetic field, a limit where a large nondecaying

coherence factor is found. This feature is explained by Bose-Einstein-condensate-like physics which also

allows us to argue that the corresponding zero frequency peak would not be broadened by statistical or

ensemble averaging.
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Using the spin of a single electron (or hole) trapped in
semiconductor-based quantum dots has been a long-
standing proposal for a possible implementation of a qubit
[1] for which single-spin readout and coherent control [2]
is now possible. In these setups, the isotropic Fermi contact
hyperfine interaction of the trapped central spin with the
bath of nuclear spins present in the substrate is know to be
the essential source of decoherence leading, over time, to a
loss of the information encoded in any prepared state of

the central spin. Denoting by ~S0 the central spin
1
2 , by

~Ij the

N nuclear spins, and by g and gn the respective couplings
to the external magnetic field h, the Hamiltonian reads

H ¼ ghSz0 þ gnh
XN

j¼1

Izj þ
XN

j¼1

Aj
~S0 � ~Ij: (1)

Dropping an irrelevant constant, the first two terms can be
simplified [3,4] to BSz0 with B ¼ ðg� gnÞh.

In the regime of strong magnetic field B> A, with A
being N times the largest Aj, the time evolution of the

central spin h ~S0ðtÞi can be described perturbatively [3,5–8]
in the flip-flop terms

P
jAjðSþ0 I�j þ H:c:Þ. In a detailed

study to fourth order, Coish, Fischer, and Loss [7] found
that the Larmor precession undergoes a typical exponential
decay which is supplemented by additional low-frequency
envelope modulations. In the opposite limit of weak (or
intermediate) fields a variety of methods including semi-
classical approaches, exact diagonalization, or the alge-
braic Bethe ansatz (ABA) have been applied [5,8–12].
For unpolarized spin baths at B ¼ 0, extrapolating a
semiclassical approach [9] to the continuum limit, as
well as time-dependent mean field theory [11] for very
large systems with N ¼ 16000 showed logarithmic decay
hSz0ðtÞi � 1= lnðtÞ at long times. However, all approaches in

the weak field limit are either based on mean-field or
semiclassical methods or are restricted to either very small

system sizes N � 20, specific bath polarizations, or the
short-time behavior.
In this work we aim to overcome these limitations by

developing a hybrid method based on the ABA in combi-
nation with a direct Monte Carlo (MC) sampling of the
exact eigenstates of the system, which we apply to the
transverse relaxation of the central spin. The method pro-
vides a nonperturbative full quantum treatment giving us
access to the complete crossover from strong to weak field
without any restriction on the initial polarization of the
bath. Because of the trivial time evolution in the eigenba-
sis, it also provides access to real-time dynamics at
arbitrarily long times without accumulated errors. While
it is only usable for modest system sizes, recent develop-
ments have drastically sped up the computation time.
In this work we treat systems containing up to N ¼ 48
nuclear spins whose Hilbert space is�2� 108 times larger
than the ones previously treated with exact methods [8,10].
For the dynamics of hSþðtÞi we find the following con-

clusions: (i) At strong to intermediate fields we observe
exponential decay with weak modulations and thus con-
firm the perturbative picture [7]. (ii) For smaller fields,
these weak modulations become dominant, leading to
long-lived slow oscillations. (iii) As B ! 0, an initial rapid
decay is followed by the formation of a nondecaying
coherent fraction whose amplitude and phase is in one-
to-one correspondence with the initial state of the central
spin. This lack of decay is explained as a consequence of
Bose-Einstein-condensate (BEC)-like physics. (iv) We
argue that the nondecaying fraction survives ensemble
averaging and is at most logarithmically dependent on
finite size effects. Consequently, we expect it to be experi-
mentally observable.
To be specific, we will consider nuclear spins 1

2 although

this restriction is not imposed by integrability or the

numerical method. The couplings are chosen as Aj ¼
A
N e

�ðj�1Þ=N corresponding to a Gaussian electronic wave
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function in a 2D quantum dot [3]. We study in detail the
time evolution of an initial coherent superposition of the
central spin: 1ffiffi

2
p ðj *i þ j +iÞ related to the T2 transverse

relaxation time. We assume the initial condition to be a
product state j�0i ¼ 1ffiffi

2
p ðj *i þ j +iÞ � j�bathi, with j�bathi

describing the nuclear spins. Narrowing techniques [13]
will typically allow one to create a superposition of
(nearly-)degenerate eigenstates of the Overhauser operator
hz ¼ P

N
j¼1 AjI

z
j . Provided there is no special phase relation

between them, the density matrix can be reduced to its
diagonal terms, leading to an averaged sum over the rep-
resented hz eigenstates. Here we avoid the average by
using a single specific zero-polarization ‘‘maximal en-
tropy’’ state: j�bathi ¼ j #1"2#3"4 � � �i with the eigenvalue
hzinit ¼

PN
j¼1ð�1ÞjAj=2. Having the up-pointing spins uni-

formly spread out over the full range of available coupling
strengths should make this state sufficiently generic to
capture the dominant features of a diagonal ensemble
average. We will confirm the validity of this particular
choice by explicitly comparing randomly generated initial
nuclear configurations.

Our main quantity of interest is the central spin coher-
ence factor which, projecting on the eigenbasis of H, can
be written as

hSþ0 ðtÞi ¼ h�ðtÞjSþ0 j�ðtÞi ¼ X

m;n

Cm;n

2
eið!m�!nÞt; (2)

where Cm;n¼h*;�bathjc mihc mjSþ0 jc nihc nj+;�bathi with

jc mi and jc ni denoting eigenstates of the Hamiltonian
(1) with energies !m and !n respectively. Since Sz0 þP

N
j¼1 I

z
j is conserved, jc mi must contain one more up-

spin than jc ni.
Any eigenstate of the central spin model (1) is entirely

defined byM complex rapidities f�1 . . .�Mg which need to
be a solution of a system ofM coupled non-linear algebraic
equations: the Bethe equations [4]. Defining �k ¼ �1=Ak

and �0 ¼ 0, the corresponding (unnormalized) eigenstate
is obtained by the repeated action, for each rapidity,

of a generalized creation operator Sþð�iÞ � Sþ
0

�i��0
þ

PN
k¼1

Iþ
k

�i��k
, i.e., jf�1; . . . ;�Mgi ¼Q

M
i¼1 S

þð�iÞj +; ##; . . . ; #i.
The corresponding eigenenergy is then given by

!ðf�1; . . . ; �MgÞ ¼ 1

2

XM

i¼1

1

�i

� B

2
� 1

4

XN

j¼1

1

�j
: (3)

Any eigenstate can therefore be pictured as containing a
given numberM of individual quasiparticles. Each of them
is described by one single complex parameter �i, which
specifies both the spin profile and its energy Re½1=�i�.

In this work, instead of finding rapidities themselves, we
solve for a different set of variables �ð�iÞ ¼

P
M
j¼1

1
�i��j

,

which can be shown to obey a simple set of quadratic
equations [14,15]. Any given solution to these equations

is found starting from the trivial B ¼ 1 solutions where an
ensemble of M spins are pointing up and the remaining
N �M are pointing down. These configurations are
deformed by a stepwise ramping of the 1=B parameter
until the desired B value is reached [15]. Finally, it was
recently shown that the scalar products matrix elements
definingCm;n in Eq. (2) can be written, in terms of�ð�iÞ, as
determinants of N þ 1� N þ 1 matrices [16]. The result-
ing fast algorithm allows us to define a probability Pm;n �
jCm;nj for any pair of eigenstates (m, n) and perform the

double sum in Eq. (2) using a simple Metropolis algorithm
(see Ref. [17] for another example of combining MC with
ABA). Starting from a randomly selected pair of B ¼ 1
eigenstates, we first deform them to the desired finite-B
eigenstates jc mi, jc ni and compute the probability Pm;n,

frequencies !m, !n and the sign sm;n ¼ sgnðCm;nÞ. A new

pair is then generated by randomly selecting one of the
two B ¼ 1 configurations and minimally changing it by
exchanging a randomly selected pair of up and down spin.
Deforming this new configuration to finite B we compute
Pm;n0 (assuming state n was modified) and accept the new

pair (m, n0) with probability min (1,
Pm;n0
Pm;n

). Repeating the

procedure generates a list of � configurations (m�, n�)
distributed according to Pm�;n� such that

hSþ0 ðtÞi
hSþ0 ð0Þi

¼ lim
�!1

P
�
�¼1 sm�;n�e

ið!m��!n� Þt
P

�
�¼1 sm�;n�

; (4)

which can be normalized by the known initial value of the
coherence factor. Figure 1 presents the spectrum hSþ0 i, (!)

and its Fourier transform hSþ0 ðtÞi for a wide range of exter-
nal magnetic fields covering the full nonperturbative cross-

overBfluc & B & A, whereBfluc ¼ ðPN
j¼1 A

2
j Þ1=2 is a typical

Overhauser field due to spin fluctuations [18], all the way
down to very weak magnetic fields. All plots are obtained
for an ensemble ofN ¼ 36 nuclear spins by sampling� ¼
107 configurations. For any finite size system, the spec-
trums consist of a series of delta peaks which are smoothed
into Lorentzians of width 0:001B in the plots.We stress that
this broadening is much smaller than the width of the peaks
seen on the graphs; i.e., the peaks are composed of a large
number of contributions at similar frequencies.
The spectrum is basically characterized by two struc-

tures. First we find a peak around the ‘‘bare’’ Larmor
frequency Bþ hzinit given by the total effective magnetic

field felt by the central spin. For the strongest magnetic
fields this sharp peak is the dominant feature whose nearly
Lorentzian line shape leads to exponentially decaying
oscillations. As the magnetic field is lowered its width
increases giving rise to faster decoherence. In addition,
there is a low-frequency structure which carries a very
low weight at strong fields but leads to slow modulations
of the envelope function. These modulations were previ-
ously observed in the fourth-order perturbative treatment
[7] and are now confirmed by our exact results.
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When lowering the field below Bfluc 	 0:1A the low-
frequency structure becomes the dominant feature, even-
tually taking a scaling form of !=B for sufficiently weak
fields [see Fig. 1(c)]. The low-frequency structure has a
finite width (/ B) and, as B ! 0, collapses into a delta
peak. In the long-time dynamics, this leads to the slowly
decaying low-frequency oscillations shown in Fig. 1(e),
whose period and lifetime can be made arbitrarily large
since the real-time evolution becomes a function of Bt.
As B ! 0 this ultimately gives rise to a nondecaying
fraction representing nearly 0.5 of the initial value. At
B ¼ 0 the total coherence factor hSþ0 i þ

PN
j¼1hIþj i is con-

served, hence the lost central spin coherence is transferred
to the nuclear spins polarizing them along the central spin’s
initial orientation and ultimately locking the system into a
nondecaying steady state.

Here, by working with exact eigenstates of the model
we get valuable insight in the processes involved which
allow us to demonstrate the complete absence of long-time
decay; i.e., in contrast to other approaches [9,11] we do not
observe a 1= lnðtÞ decay. In the B ! 0 limit, eigenstates
contain two independent subsets of quasiparticles. A state-
dependent number 0 � r � M of rapidities diverge as

�i 	 Li=BþOð1Þ (Li being roots of a Laguerre polyno-
mial [19]). The corresponding excitations become part of a
Bose-Einstein-like condensate of quasiparticles. Being cre-
ated by the same operator Sþð�i ! 1Þ / Sþ0 þP

N
k¼1 I

þ
k ,

they are indeed all identical and all have zero-energy
Re½1=�i� / BþOðB2Þ. On top of this condensate one
finds M� r additional excitations with finite energies.
They are characterized by finite �i 	 �0

i þOðBÞ whose
proximity with some particular values of the inverse cou-
plings f�ig leads to a localized excitation profile. Retaining
the same set of localized excitations, one can actually
form new zero-field eigenstates with the same energy by
adding any number of quasiparticles to the condensate.
This particular structure of the exact eigenstates is another
manifestation of BEC-like physics which echoes the
behavior of other integrable Gaudin models such as
the Dicke model’s superradiance [20] or the Richardson
model’s superconductivity [21].
In Eq. (2), any pair of eigenstates which only differ

by one additional condensed quasiparticle will contribute
to the nondecaying (! ¼ 0) fraction at B ¼ 0. At weak
finite fields they lead instead to a low-frequency (! ¼
!m �!n / B) contribution explaining the scaling seen
in panel (c) of Fig. 1. Any other pair of eigenstates gives
a finite frequency contribution. These are spread over a
large energy band, leading to the initial rapid decay.
The eigenenergies are dominated by the finite rapidities
(localized excitations), weak magnetic fields only give
subleading corrections to this feature. As shown in Fig. 2
for B & Bfluc, this results in B-independent early dynamics
well described by a quadratic decay law.
Experimental observation of the nonperturbative long-

time contributions; e.g., the low-frequency oscillations,
requires two conditions. It needs to have a lifetime suffi-
ciently longer than the initial decay and, at the same time, it
has to carry a sufficiently large weight. From a rough
analysis of the real-time numerical data, fields B �
0:03A (�0:1 T for GaAs or �0:0015 T for Si:P using
[3] A=ðg
�BÞ ¼ 3:5 T and A=ðg
�BÞ ¼ 0:05 T, respec-
tively) would be sufficient to exhibit oscillations with an

FIG. 1 (color online). Left: Spectrum hSþ0 ð!Þi in the crossover
and weak magnetic field regimes. The dashed lines mark the
‘‘bare’’ Larmor frequencies Bþ hzinit. Panel c) is plotted in terms

of the rescaled frequency !=B and shows only the low-
frequency structure. Right: The corresponding real-time evolu-
tion of the coherence factor hSþ0 ðtÞi. Each curve has an offset of 1
compared to the previous one. Black lines in panel d) are the
norms jhSþ0 ðtÞij which, in the perturbative regime, correspond to

the envelope function computed in Ref. [7].

FIG. 2 (color online). Short time dynamics of the norm
jhSþ0 ðtÞij for intermediate to weak fields. The nine values of

magnetic fields B< Bfluc shown in Fig. 1 are plotted with full
black lines (B=A 2 ½1:3889� 10�6; 0:05556�). The red dashed
line is a quadratic fit with parameter �� ðA=NÞ�1. For both
GaAs and Si:P, using values from Ref. [3] gives � 	 1 �s.
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amplitude of �10% of the initial coherence factor and a
lifetime long enough compared to the initial rapid decay
[see the B ¼ 0:02778ðAÞ curve in Fig. 1(e)]. These oscil-
lations would be clearly distinguishable from any pertur-
bative result since their frequency is nearly an order of
magnitude lower than the Larmor frequency. Since we are
looking for a clear measurable signature, the resulting
threshold is at much weaker fields than the naive limit of
validity of perturbation theory B� A.

In Fig. 3 we show the long-time averaged contribution
for a variety of system sizes. We see that even for modest
system sizes (N � 20) the finite-size discretization does
not seem to affect strongly the total weight carried by the
low-frequency contributions. The error bars and system
sizes treated here do not exclude a slow logarithmic reduc-
tion �1= lnð�NÞ of the total fraction as was observed in a
finite-size semiclassical treatment [9] of the longitudinal
decay, eventually leading to 1= lnðtÞ decay in the contin-
uum limit [9]. In contrast, our full quantum mechanical
treatment includes the discreteness of the spin bath and
shows the nondecaying fraction to be observable for finite
systems. Indeed, even an assumed �1= lnð�NÞ reduction
would yield an observable nondecaying fraction for
experimentally relevant system sizes (N 	 102 in Si:P or
N 	 105 in GaAs).

Considering that even a physically narrowed system
should be described in terms of a diagonal ensemble aver-
age, in Fig. 4 we compare the weak field dynamics for an
ensemble of 10 unpolarized (M ¼ N=2) initial bath states
obtained by choosing a random set of M up-pointing
nuclear spins. This is less restrictive than the eigenstate
content of a narrowed state since the initial Overhauser
eigenvalue hzinit is not fixed. While we observe slight var-

iations in the total nondecaying fraction, it systematically
stays above 0.4 and maintains the X-Y plane phase of the
initial central spin orientation. Initializing the central spin
at a different point on the Bloch sphere �j *i þ �j +i
would only lead to a multiplicative factor hSþ0 ðtÞi ¼
��hSþ0 ðtÞið*þ+Þ, which still conserves the relative phase.

Albeit averaging may lead to a slightly lowered total
fraction, the common phase obtained for all nuclear spin
configurations means that diagonal ensemble averages
hSþ0 ðtÞi �

P
n�nhf�gnjSþ0 ðtÞjf�gni, be they performed for a

narrowed or even infinite temperature state, would still
yield a large nondecaying fraction. In fact, when projecting
any typical initial state onto the weak-field eigenbasis, one
will populate a large fraction of the available eigenstates.
Since a large majority of them have a finite number of
condensed quasiparticles, so will the resulting quantum
superposition. On average, one can then systematically
expect to find a finite fraction of particles whose dynamics,
being frozen by their zero energy, will retain information
about the initial state.
Moreover, the existence of this condensate is completely

independent of the set of couplings constants and hence the
dot geometry. Therefore, the zero-frequency peak which
leads to a nondecaying fraction, should not exhibit any
inhomogeneous broadening in experiments which involve
an average over different quantum dots. Neither the ge-
ometry nor the initial nuclear spin configuration can
broaden then delta peak. This is in stark contrast to recent
optical spin noise experiments [22] where a Lorentzian
line shape was observed. However, a direct comparison
to our results is not possible considering the experimental
work was carried out on hole-spin based samples for
which the hyperfine coupling is strongly anisotropic. In
the isotropic system considered here a finite lifetime would
require the addition of integrability breaking terms to the
Hamiltonian (1). The weak dipolar coupling between the
nuclear spins could play such a role although on relatively
long time scales �dd 	 10�4 s in GaAs; another mecha-
nism would be quadrupole couplings to the nuclear spins
[23]. In addition, while we argued that ensemble fluctua-
tions in the nuclear Overhauser field would not lead to a
finite lifetime, it should be noted that local fluctuations
in the external magnetic field would induce broadening
due to the !=B dependency of the spectrum. This demon-
strates that, at weak field, the strong correlations between
the central and nuclear spins lead to a clear distinction
between external magnetic field and the internal
Overhauser field.

FIG. 3 (color online). The nondecaying coherent fraction as a
function of the number of nuclear spins at B=A ¼ 1:04168�
10�6. We sample � ¼ 107 configurations. Error bars indicate
the magnitude of the fluctuations which are due to a mixture of
finite size effects and MC error. Dashed lines are guides to the
eye at 0 and 0.4812 (the long-time value for N ¼ 48).

FIG. 4 (color online). The long-time averaged coherent frac-
tion for 10 randomly generated initial nuclear spin configura-
tions. The meaning of the error bars is as in Fig. 3. Inset:
Corresponding real-time evolution. Magnetic field is B=A ¼
1:3889� 10�6 and N ¼ 36.
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In conclusion, we have developed a nonperturbative
method to study the dynamics in the central spin model
which is applicable to arbitrary magnetic fields and initial
bath polarizations and provides access to the real-time
dynamics at arbitrary long times. We applied this method
to the transverse spin relaxation which, at weak fields,
shows initial rapid quadratic decay followed by a large
arbitrarily long-lived finite coherent fraction resulting from
the BEC-like behavior of the system.
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