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Localized wave fronts are a fundamental feature of biological systems from cell biology to ecology.

Here, we study a broad class of bistable models subject to self-activation, degradation, and spatially

inhomogeneous activating agents. We determine the conditions under which wave-front localization is

possible and analyze the stability thereof with respect to extrinsic perturbations and internal noise. It is

found that stability is enhanced upon regulating a positional signal and, surprisingly, also for a low degree

of binding cooperativity. We further show a contrasting impact of self-activation to the stability of these

two sources of destabilization.
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Bistable systems are ubiquitous in nature. For example,
genetic switches are bistable systems that store the activa-
tion state of a gene [1,2]. In population dynamics, a mini-
mum population size is often needed to establish a stable
population [3]. The spatial versions of such systems admit
traveling wave solutions, e.g., describing the outbreak of
viruses or the colonization of territory [4–7]. If bistable
systems are subject to external spatial gradients, traveling
waves may localize in restricted spatial domains [8–10].
An important example arises in early embryogenesis of
Drosophila melanogaster where maternal morphogen gra-
dients provide positional information for gene regulation
[11–14]. The morphogen Bicoid is present as a monotoni-
cally decreasing concentration in the embryo and controls
the steplike activation of the gene hunchback, which also
enhances its own activation, effectively producing a bi-
stable system. The exact position of the hunchback front is
pivotal to the embryo’s fate [13]. Hence, the front’s stabil-
ity to extrinsic perturbations or internal noise is paramount.
Wave localization and the stability of the front also play an
important role in other contexts. In ecology, birth rates may
have spatial dependence, e.g., due to spatial variance in
temperature or resource availability [15,16]. The localized
boundaries between species are subject to large fluctua-
tions due to the low number of individuals in the boundary
region. This may eventually lead to the extinction of one of
the species due to demographic stochasticity [17]. Last, in
biotechnological applications, this mechanism might be
used to create localized fronts of proteins [18].

Motivated by these processes, we investigate a broad
class of bistable diffusion-reaction models with reaction
terms comprising self-activation, external activation, and
degradation. While self-activation and degradation are
assumed to be spatially uniform, the external activation is
taken to be position-dependent. We consider two qualita-
tively different types of external gradients and determine
the parameter range for which wave localization is pos-
sible. Moreover, we ask how stable these localized fronts

are with respect to extrinsic and intrinsic noise, and we
determine optimal conditions minimizing the front’s sus-
ceptibility to such perturbations.
Specifically, we consider a one-dimensional system

where diffusing particles are subject to three types of
reactions: First, there are gain processes with a
concentration-dependent rate that accounts for self-
activation in gene regulatory systems or reproduction in
population dynamics. Typically, these rates are small for
low concentrations, then rise and finally saturate at high
concentrations. In populations dynamics, this is referred to
as the strong Allee effect [3,6]. In gene regulation, it can be
due to cooperative transcription factor binding to a gene
promoter. A common choice for the overall reaction rate is
krR

n
a0ðaÞ with the Hill function Rn

a0ðaÞ � an=ðan0 þ anÞ, kr
the maximum intrinsic production rate, and a the particle
concentration. The Hill coefficient n measures the degree
of cooperative binding in the promoter region or, in
ecology, the strength of an Allee effect. Second, we
account for loss processes, where particles vanish with a
certain rate �. Third, in addition to self-activation, there
may also be external sources for particle production. Here,
we are interested in systems where this source is position-
dependent and characterized by the overall rate kMMðxÞ.
The prefactor kM denotes the maximum rate of external
activation, andMðxÞ is a monotonically decreasing positive
density profile with normalization Mð0Þ ¼ 1. In the
simplest case, where the profile results from a source-

degradation dynamics [19,20], it is exponential MðxÞ ¼
e�x=� with the decay length �, cf. Fig. 1(a). Prominent
examples are the concentration profile of Bicoid in
Drosophila [19] and temperature or nutrient gradients in
population dynamics [21]. Since the production of hunch-
back by Bicoid is mediated by cooperative binding,
the profile MðxÞ entering the overall production rate is

commonly described by MðxÞ � Rm
I0
ðe�x=�Þ [22]. The

exponentially decaying signal induced by maternal
source-degradation dynamics serves as an input to the
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gene regulation system. The latter is described by a Hill
coefficient m typically in the range from 1 to 5 and with an
activation threshold I0.

In the limit of a large system size, fluctuations are of
minor importance and the spatiotemporal dynamics is then
aptly described by a reaction-diffusion equation, which in
dimensionless form reads

@tu ¼ fðu; xÞ þ @xxu: (1)

Here, fðu; xÞ � rRn
u0ðuÞ þMðxÞ � u comprises self-

activation, external activation, and degradation.
Concentration u, time t, and space x are measured in

units of kM=�, 1=�, and
ffiffiffiffiffiffiffiffiffiffi

D=�
p

, respectively. The ratio r �
kr=kM denotes the relative amplitude of self-activation and
external activation mediated through MðxÞ.

Traveling wave solutions of Eq. (1) may be localized due
to the combined effect of spatially varying external sources
and bistability [8–10]. The basic mechanisms can be best
understood in terms of the well-known sliding ball analogy
[23], which here is complicated by the fact that the reaction
term is space-dependent. Since in most biological situ-
ations a steep profile in u is induced by a smooth external
profile MðxÞ, we may assume a separation of length scales

� � ffiffiffiffiffiffiffiffiffiffi

D=�
p

and �much smaller than the system size. Then
one can make a generalized traveling wave ansatz U ¼
Uðx� qðtÞ; yÞ, where x is a fast-varying variable describ-
ing changes in the concentration profile, y ¼ x=� is a
slowly varying variable describing changes in the external
profileMðxÞ, and qðtÞ denotes the front position. To leading
order, this gives

� _q@xU ¼ @xxUþ @UVðU; yÞ þOð��1Þ; (2)

which may be interpreted as a force balance for a particle
(sliding ball) with mass 1, friction _q, and potential
Vðu; yÞ ¼ R

u fð~u; yÞd~u. Importantly, the potential para-
metrically depends on y; see Fig. 1(b). For parameter

regimes where V has two maxima at uþðxÞ and u�ðxÞ
and a local minimum at usðxÞ, the velocity _q must be
chosen such that the sliding ball starting from the upper
branch uþ ends up at the lower branch u�. The front speed
is proportional to the difference between the two maxima

of Vðu; yÞ and becomes zero if the condition �VðyÞ �
R
uþ
u� fðu; yÞdu ¼ 0 is satisfied. More quantitatively, follow-

ing standard steps [23–25], one finds [26]

_q � �VðqÞ
R1
�1½@xUðx� q; yÞ�2dx � cðqÞ; (3)

where U is the traveling wave solution. The denominator
roughly equals the maximum steepness of the front profile
and implies that steep fronts move slower [23].
In our class of models, a single branch of stable solutions

at high concentrations typically undergoes a fold bifurca-
tion for growing x, where the system is bistable on a
confined spatial interval; see Fig. 1(c). For large x values,
a single branch at low concentrations remains. Within the
bistable regime, the velocity cðqÞ may change sign and
thereby lead to a localization of the traveling wave front.
We first determine the localization position q0 of the

front from �Vðq0Þ ¼ 0. Approximations for u�ðxÞ can
be obtained by expanding f as Taylor or Laurant
series: u�ðxÞ ¼ MðxÞ þOðunÞ and uþðxÞ ¼ MðxÞ þ rþ
Oðu�nÞ. For a given external profile MðxÞ, the potential
reads Vðu;xÞ¼�u½u=2�MðxÞ�rþrFðun=un0Þ�, where

FðzÞ � 2F1ð1; 1=n; 1þ 1=n;�zÞ and 2F1 signifies the
hypergeometric function. Keeping the dominant terms of
MðxÞ in �V we then obtain an expression forM0 � Mðq0Þ
determining the localization position q0,

M0 � 1

2
r

�

1þ
�

r

u0

�
n
��

u0
r

�
n
�

2F

�

rn

un0

�

� 1

�

:

This is well approximated by a linear function of the form
gðnÞðu0 � r=2Þ and converges to u0 � 1

2 r for n ! 1. For

FIG. 1 (color online). (a) Two types of gradients: exponential decay (dashed line) and a sigmoidal profile ensuing from regulating an
exponentially decaying input (solid line). (b) The potential for different values of the front position q. The sliding ball analogy states
that the front localizes where the two maximum values of the potential are equal. (c) Sketch of the bifurcation diagram and traveling
wave solution of Eq. (1). Blue (dark gray) lines denote stable solutions whereas the dashed (red) line corresponds to the unstable
branch. Wave fronts (black lines and shaded area) penetrating the bistable region slow down and eventually come to rest at a stable
fixed point of the front dynamics. (d) Phase diagrams of possible parameter values allowing wave localization. The parameter range of
wave localization increases with the Hill coefficient n.
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exponentially decaying gradients, the equilibrium front
position is then given by q0 ¼ � lnM0. For sigmoidal

gradients, MðxÞ � ~kRm
k ðe�x=�Þ with dimensionless thresh-

old k and normalization factor ~k � km þ 1, the front local-

izes at q0 ¼ �=m lnfð~k�M0Þ=½ð~k� 1ÞM0�g.
Under which conditions is wave localization possible

and robust? In Drosophila, the parameters r, u0, and n are
of special importance as they are main determinants of the
gene regulation network [13]. The wave localizes if there is
a bistable region in the bifurcation diagram, i.e., if for some
x, the reaction term in Eq. (1) has three real roots. Such
values of x exist if the maximum value of the derivative of
Ru0
n ðuÞ � u is greater than zero. We obtain an approximate

expression for the phase boundaries

� ½F�1ð1=2Þ�1=n & u0
r
&

n2 � 1

4n

�

nþ 1

n� 1

�
1=n

(4)

and u0
r & 1

2 þ 1
r . Figure 1(d) shows that the range of allowed

parameters grows with n. For large n values, the phase
boundaries are well approximated by 1

2 � u0
r � 1

2 þ 1
r . This

translates to a0� � kr; i.e., for front localization, the over-
all degradation rate at the threshold must be of the same
order as the maximum production rate.

To be stable against extrinsic perturbations, the front
should both relax back quickly into its equilibrium position
and be insensitive to perturbations in the driving signal
MðxÞ. Since a high relaxation rate implies that a front can
follow changes in the signal quickly, the two stability
criteria seem to be somewhat at odds. However, as shown
below, they are in full accordance with the latter being less
restrictive.

The relaxation rate of the front back into its equilibrium
position q0 can be assessed within the framework of a
linear stability analysis. Mathematically, this is given by

expanding Eq. (3) at q0: cðqÞ¼��ðq�q0ÞþOðq�q0Þ2,
where � � �@qcðqÞjq¼q0 . The quantity � measures the

stability of the fixed point q0, such that large values of �
correspond to a stably localized front. We find

� ¼ �@MðqÞ�VðMðqÞÞ@qMðqÞ
R1
�1½@xUðx� qÞ�2dx

�
�
�
�
�
�
�
�q¼q0

; (5)

revealing that extrinsic stability is determined by three
factors: In the numerator, the first factor describes how
sensitively the potential difference of the stable states
depends on the external source. The second factor, � �
j@MðqÞ=@qjq0 , gives the steepness of the external profile at
the localization position. Whereas, therefore, a steeper
source profile enhances front stability, the steepness of
the front profile (denominator) has the opposite effect.
The reason simply is that steeper fronts move slower and
therefore also relax back more slowly; cf. Eq. (3).
Figure 2 shows the results of the numerical evaluation of

� for both types of external sources; analytical results are
given in the Supplemental Material [27]. For both types of
gradients we find that the localized wave front is most
stable if r is small, i.e., if self-activation is weak or birth
rates are low compared to the strength of the external
source [Figs. 2(a) and 2(b)]. This can mainly be attributed
to a decreased front steepness: reducing self-activation
relative to external activation decreases the distance
between the fixed points u� and thereby the steepness of
the wave front. The front’s stability is further optimized if
it is localized at the steepest position of the external signal.
For signals with a sigmoidal profile, this corresponds to
M0 � 1=2, and with M0 � u0 � r=2 in dimensionless
form, it implies a relation between the degradation rate
and the activation rates, a0� ¼ ðkr þ kMÞ=2. Similarly, for

FIG. 2 (color online). Stability ��, normalized to the steepness of the external profile, for (a) exponential and (b) sigmoidal [m ¼ 5]
external profiles; the Hill coefficient for self-activation is n ¼ 5. Stability increases from blue to red (grayscale is from dark gray over
light gray to medium gray): values of �� on lines of equal stability are indicated in the graph. While in both cases stability is optimized
for weak self-activation r, they differ in the spatial position of the localized front as measured by the value of M0. (c) For sigmoidal
profiles, small Hill coefficients n for self-activation are optimal for front stability. Parameters for plots (a)–(c) were � ¼ 100 and
k ¼ 0:2. (d) To study if regulation of an exponential signal is biologically beneficial, we determined the optimal stabilities that can be
achieved for a front localized at a specific position. For each q0, there are parameters r, k, and M0 such that the linear stability � is
maximal. Parameters were n ¼ 5, 2 � r � 6, 0:1 � k � 1. The plot shows the corresponding optimal values for � for exponential
(dashed line) and sigmoidal external profiles (solid line,m indicated in the graph). Sigmoidal gradients are generally more stable and in
addition allow stable localization of fronts a significant distance from the gradients source at x ¼ 0.
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an exponential profile with M0 ¼ 1, one finds
a0� ¼ kr=2þ kM.

How does cooperative binding influence stability? Since
cooperativity in the kinetics of the external source implies
a steeper sigmoidal profile, large values for the Hill coef-
ficient m increase the front’s stability; see also the explicit
expression for � in the Supplemental Material [27].
Conversely, we find that stability is optimized for small
values of n, i.e., a low degree of cooperativity in the self-
activation reaction [Fig. 2(c)] [28]. This somewhat coun-
terintuitive result can be attributed to a less steep front
profile for small n; see the Supplemental Material [27].
Experimental data for the hunchback gene indeed indicate
that the Hill coefficient n for self-activation is rather low
[13,29]. Figure 2(d) shows that stability for sigmoidal
external gradients is, all other things being equal, generally
higher than that for exponential gradients. This implies that
regulating an external positional signal is advantageous to
the front’s stability, since in this case the nonlinear ampli-
fication of the signal makes it possible to create a steep
signal even far from the origin.

To ensure stable localization, the front must also be
robust against perturbations in MðxÞ. Specifically, its posi-
tion q0 should only weakly depend on the local signal
strength, j@q0ðMÞ=@MjM0

	 1. This condition is equiva-

lent to a steep source profile, � ¼ j@MðqÞ=@qjq0 � 1, and

hence in full accordance with a large relaxation rate�. It is,
however, less restrictive since it is indifferent to changes in
parameters that mainly affect the shape of the front, e.g.,
the rate of self-activation r and the Hill coefficient n; see
Supplemental Material [27].

In many applications, the front serves as a signal for
further downstream processes, e.g., to determine stripelike
patterning of the Drosophila embryo [30,31]. In those
instances, it is also important that a front is not only stable
against perturbations but also sharply distinguishes
between active and inactive regions. This requires a steep
front that is generally obtained if self-activation is strong
compared to external activation and, to a lesser degree, if
binding cooperativity is strong; see the Supplemental
Material [27]. Sharp fronts, however, are susceptible to
extrinsic fluctuations, and one has to sacrifice front stabil-
ity for the precision of the transmitted signal.

Intrinsic noise resulting from small copy number fluc-
tuations also affects the stability of the localized wave
front. In this case, stability can be measured in terms of
the ratio D=Df between the individual particle’s and the

front’s diffusion constants. The latter can be calculated
following the steps outlined in Ref. [17],

D

Df
¼ N½R1

�1 dxðU0Þ2�2
R1
�1 dx½12 ðU0Þ2hðUÞ þUðU00Þ2�

�
�
�
�
�
�
�
�q¼q0

; (6)

where hðUÞ � Rn
u0ðUÞ þMðxÞ þU, and U denotes the

stationary solution. Generally, the front’s diffusion con-
stant is smaller than the particle’s diffusion constant by a

factor N, which corresponds to the typical number of
particles in the front region. The integral in the numerator
gives the maximum steepness of the front. Hence, as
opposed to extrinsic stability, intrinsic stability is optimal
for steep fronts. Shallow fronts are prone to stochastic
switching, as the entropy barrier between the stable states
is reduced in the front region. The terms in the denominator
account for the reaction and diffusion noise. In contrast to
extrinsic stability, we here find that the front is most robust
against fluctuations for strong self-activation r. The reason
for this is that, as r determines the amount of reactions
necessary to locally switch between the stable states, the
rate of stochastic switching decreases for large r values.
Explicit analytical results can be found in the
Supplemental Material [27].
In conclusion, we identified conditions optimizing the

stability and robustness of localized wave fronts for differ-
ent types of perturbations. We find that increasing cooper-
ativity in self-activation broadens the parameter regime
where wave localization becomes possible and thereby
increases the robustness of the localization mechanism.
Interestingly, there is a trade-off between the stability of
the wave front to extrinsic and intrinsic perturbations.
While weak self-activation or low birth rates enhance the
stability with respect to extrinsic perturbations, stochastic
defocusing is minimized for strong self-activation. The
latter also increases the spatial precision of the signal trans-
mitted by the front to downstream processes. Moreover, we
showed that processing input from external sources with a
cooperative gene activation mechanism generally enhances
the front’s stability even far from the source. Surprisingly,
while cooperativity in external activation increases the
front’s stability with respect to extrinsic perturbations, the
opposite holds true for self-activation.
The conflict between intrinsic and extrinsic stability

affects, for example, the design of gene circuits in devel-
opmental systems. Our results suggest different design
principles depending on the particle number. If the number
of involved particles is large, intrinsic noise is irrelevant.
Then the parameters of the genetic network may be opti-
mized for robustness against external perturbations, which
is achieved by weak self-activation and strong cooperativ-
ity in external activation. Conversely, if particle numbers
are low, robustness against intrinsic noise requires strong
and cooperative self-activation. To also safeguard against
external perturbation then requires additional mechanisms
beyond those included in our simplified model. We expect
these general results to be important guiding principles in
the context of biological pattern-forming systems, such as
cell polarization or the segmentation of embryos.
This research was supported by the German Excellence

Initiative via the program ‘‘Nanosystems Initiative
Munich’’ and the German Research Foundation via the
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EMBO J. 17, 5998 (1998).

[23] M. Cross and H. Greenside, Pattern Formation and
Dynamics in Nonequilibrium Systems (Cambridge
University, New York, 2009).

[24] A. K. Abramyan and S. A. Vakulenko, Teor. Mat. Fiz. 155,
678 (2008).

[25] S. Vakulenko, Manu, J. Reinitz, and O. Radulescu, Phys.
Rev. Lett. 103, 168102 (2009).

[26] One may also arrive at this equation employing a varia-
tional ansatz (Whitham principle) [24,25].

[27] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.110.038102 for more
detailed calculations supporting the results presented in
the text.

[28] This statement applies for exponential as well as sigmoi-
dal external profiles.

[29] J. Treisman and C. Desplan, Nature (London) 341, 335
(1989).

[30] T. Gregor, D.W. Tank, E. F. Wieschaus, and W. Bialek,
Cell 130, 153 (2007).

[31] S. Surkova, D. Kosman, K. Kozlov, Manu, E. Myasnikova,
A. A. Samsonova, A. Spirov, C. E. Vanario-Alonso, M.
Samsonova, and J. Reinitz, Dev. Biol. 313, 844 (2008).

PRL 110, 038102 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

18 JANUARY 2013

038102-5

http://dx.doi.org/10.1103/PhysRevLett.106.088101
http://dx.doi.org/10.1103/PhysRevLett.106.088101
http://dx.doi.org/10.2307/3547011
http://dx.doi.org/10.1006/tpbi.1993.1007
http://dx.doi.org/10.1006/tpbi.1993.1007
http://dx.doi.org/10.1111/j.1461-0248.2005.00787.x
http://dx.doi.org/10.1063/1.3149861
http://dx.doi.org/10.1063/1.3149861
http://dx.doi.org/10.1086/318633
http://dx.doi.org/10.1086/318633
http://dx.doi.org/10.1529/biophysj.107.120824
http://dx.doi.org/10.1529/biophysj.107.120824
http://dx.doi.org/10.1137/10079118X
http://dx.doi.org/10.1137/10079118X
http://dx.doi.org/10.1016/0092-8674(88)90183-3
http://dx.doi.org/10.1016/0092-8674(88)90182-1
http://dx.doi.org/10.1371/journal.pcbi.1000184
http://dx.doi.org/10.1371/journal.pcbi.1000184
http://dx.doi.org/10.1371/journal.pcbi.0030078
http://dx.doi.org/10.1371/journal.pcbi.0030078
http://dx.doi.org/10.1103/PhysRevE.84.011147
http://dx.doi.org/10.1103/PhysRevE.84.011147
http://dx.doi.org/10.1038/nsmb.2037
http://dx.doi.org/10.1242/dev.032409
http://dx.doi.org/10.1242/dev.032409
http://dx.doi.org/10.1126/science.1200037
http://dx.doi.org/10.1126/science.1200037
http://dx.doi.org/10.1111/j.1461-0248.2006.00991.x
http://dx.doi.org/10.1093/emboj/17.20.5998
http://dx.doi.org/10.1007/s11232-008-0058-z
http://dx.doi.org/10.1007/s11232-008-0058-z
http://dx.doi.org/10.1103/PhysRevLett.103.168102
http://dx.doi.org/10.1103/PhysRevLett.103.168102
http://link.aps.org/supplemental/10.1103/PhysRevLett.110.038102
http://link.aps.org/supplemental/10.1103/PhysRevLett.110.038102
http://dx.doi.org/10.1038/341335a0
http://dx.doi.org/10.1038/341335a0
http://dx.doi.org/10.1016/j.cell.2007.05.025
http://dx.doi.org/10.1016/j.ydbio.2007.10.037

