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We experimentally investigate the action of a localized dissipative potential on a macroscopic matter

wave, which we implement by shining an electron beam on an atomic Bose-Einstein condensate (BEC).

We measure the losses induced by the dissipative potential as a function of the dissipation strength

observing a paradoxical behavior when the strength of the dissipation exceeds a critical limit: for an

increase of the dissipation rate the number of atoms lost from the BEC becomes lower. We repeat the

experiment for different parameters of the electron beam and we compare our results with a simple

theoretical model, finding excellent agreement. By monitoring the dynamics induced by the dissipative

defect we identify the mechanisms which are responsible for the observed paradoxical behavior. We

finally demonstrate the link between our dissipative dynamics and the measurement of the density

distribution of the BEC allowing for a generalized definition of the Zeno effect. Because of the high

degree of control on every parameter, our system is a promising candidate for the engineering of fully

governable open quantum systems.
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Gathering information from a quantum system is never
free of cost. Every measurement process provides a cou-
pling between the quantum system and the (classical)
environment, which leads to nonunitary dynamics, and in
some cases to the destruction of essentially quantum
effects. The elusive transition from the quantum to the
classical realm must therefore be inherent in the processes
that the environment induces on the system. In recent
decades several advances have been made in the study of
environmentally induced phenomena like decoherence and
decoherence-induced selection of preferred states (einse-
lection) [1–3]. More recently environmental action has
been used to manipulate qubits in a system of trapped
ions [4]. The knowledge and the mastering of the
action of the environment are essential for taming errors
in quantum computation schemes [5,6] or to engineer
decoherence-free subspaces for qubits [7–9], and are also
key to understanding the emergence of classicality from
the quantum [2,3]. In the context of the theory of open
quantum systems, environmental action gives rise to effec-
tive Hamiltonians which can contain imaginary terms
[2,3,10]. Since these terms actually arise from a collection
of an enormous number of degrees of freedom [3], how-
ever, a complete experimental control over them appears
overly challenging. Here, we report the engineering of a
fully controllable, environmentally induced imaginary
potential acting on a quantum system, and present obser-
vations of the subsequent induced dynamics. The localized
imaginary potential is realized by the almost pure dissipa-
tive action of an electron beam (EB) on an atomic Bose-
Einstein condensate (BEC). We show that such a potential
can be used to describe a continuous measurement process
that can exhibit a generalized version of the so-called Zeno
effect. The combination of the robust and macroscopic

many-body quantum behavior of a BEC and the high
tunability and precision of the EB promotes such a system
as a paradigm for governable open quantum systems.
One of the most striking properties of BECs is that,

despite their many-body nature, they can be described to
a good approximation by a mean-field wave function obey-
ing the so-called Gross-Pitaevskii equation (GPE). This
remains valid also when the BEC is coupled with the
environment. Starting from the Lindblad master equation

i �h@t�̂ ¼ ½Ĥ; �̂� þ i �h L̂ �̂ , where �̂ is the density operator

of the many-body system, Ĥ is the Hamiltonian operator,

and L̂ is the dissipation operator such that L̂ �̂ ¼
�R

dx�ðxÞ=2½�̂þ�̂ �̂þ�̂�̂þ�̂� 2�̂ �̂ �̂þ�, with �ðxÞ
the local dissipation rate, we can write the equation of
motion for the expectation value of the bosonic field

operator �̂ as @th�̂i ¼ Trð�̂@t�̂Þ, which leads to a time-
dependent GPE with an additional imaginary term (see the
Supplemental Material [11] and Refs. [12,13]):
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Here c is the BEC wave function, obeying the constraintR jc ðx; tÞj2dx ¼ NðtÞ, Vext is the trapping potential, and
g ¼ 4� �h2a=m, a being the s-wave scattering length.
Notably our technique allows independent control of the
Hamiltonian and dissipative terms of this equation. The
ability to describe our open quantum many-body system
with such a simple expression is a key asset for under-
standing and mastering its dynamics.
Experimental implementation.— In our experiment we

prepare a pure BEC of 75� 103 atoms in a single-beam
optical trap by means of forced evaporation. Once the
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evaporation is over, we shine a focussed EB right at the
center of the BEC. The EB is produced by a commercial
electron microscope mounted inside the vacuum chamber
[14]. The electron microscope is able to generate a beam of
6 keV electrons with variable beam extensions and cur-
rents. When the electrons impact on the BEC they collide
locally with the atoms, ionizing or exciting them. Those
atoms which have undergone an electron collision escape
from the trapping potential [see Fig. 1(a)]. The EB thus
locally dissipates the BEC. The ionized atoms, roughly
40% of all those scattered, are then directed to an ion
detector, where their arrival times are registered. While
escaping from the trapping region the ions can collide with
the trapped atoms producing additional losses [11]. The
total detection efficiency � is the product of the branching
ratio (40%) and of the combined ion optics and detector
efficiency (75%). Details of the experimental apparatus can
be found in Refs. [14,15]. If the EB is rapidly moved in a
controlled pattern, the whole column density profile of the
BEC can be reconstructed [14,16]. Here we keep the EB
fixed in the center of the BEC, and monitor the subsequent
induced dynamics by looking at the temporal signal from
the ion detector [see Fig. 1(b)]. By controlling the beam
parameters, we can engineer the dissipative term in Eq. (1):
we write it as �ðxÞ ¼ I�=ð2�ew2Þ expð�ðx2 þ y2Þ=2w2Þ,
I being the EB current,� the electron-BEC scattering cross
section [11], e the elementary charge, and w the standard
deviation of the spatial electron distribution, assumed to be
Gaussian [11].

Comparison between experimental results and theoretical
expectations.— In Fig. 2 we report the number of ions
collected in the first 5 ms of continuous dissipation as a
function of the EB current for three different values of w.
Notably we observe that the number of ions produced, as a
function of the EB current (i.e., of the number of electrons
sent on the atoms), shows a nonmonotonic dependence. In
other words, starting from a critical value of the EB current,
the harder we try to dissipate, the less we manage to do it.

This paradoxical behavior is more marked for smaller values
ofw. In the samefigure the data are comparedwith the results
obtained by numerically solving Eq. (1), additionally taking
into account secondary effects like ion-atom collisions [11].
The agreement is very good [and the same agreement is
visible in Fig. 1(b)], demonstrating that the description of
the EB as a pure dissipative potential is sufficient to capture
the observed main features. A detailed description of the
dynamics that leads to the curves reported in Fig. 2 will be
given in the following. From simple textbook calculations, or
frommore formal analysis like the onemade inRef. [17], it is
easy to verify that a localized imaginary potentialU induces
total reflection as the strength of the potential goes to infinity.
Hence the effective quantum dissipation vanishes when the
localized imaginary potential is either zero or infinity, imply-
ing the existence of amaximumof dissipation for some finite
value ofU. This explains on a qualitative basis the observed
nonmonotonicity. The position of the maximum is of special
importance, since it sets the parameters which allow one to
engineer the most efficient possible absorbing potential. As
an example, in Ref. [17], where the time of arrival of a one-
dimensional wave packet ismeasured by a steplike potential,
the maximum dissipation is analytically calculated to be
UM ’ 10:6E, where E is the energy of the wave packet. In
our case the presence of the nonlinearity and the less ideal-
ized conditions do not allow for an analytic solution, but from
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FIG. 1 (color online). (a) The electrons locally collide with the
atoms constantly dissipating the BEC. (b) Temporal resolved
signal from the ion detector. The bin size is 1 �s. Points are
experimental data averaged over 1800 experimental repetitions,
while the solid curve is the numerical simulation (see text). After
5 ms we typically collect ’ 450 ions.

FIG. 2 (color online). Number of ions collected within the first
5 ms of continuous dissipation on a BEC as a function of the
EB current I. The three panels report the data obtained with
w ¼ 127ð5Þ, 17(7), and 212(8) nm, from left to right. Each data
point is the average over 75 experimental repetitions. The error
bars are mainly due to shot-to-shot fluctuations in the overall ion
detection efficiency. The solid lines are the number of dissipated
atoms resulting from the numerical simulations (see text). Please
note that in the sum the initial decay visible in Fig. 1(b) is also
included. The scale on the top reports the strength of the
imaginary potential U= �h ¼ �ð0Þ=2 corresponding to the mea-
sured current.
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the numerical results plotted inFig. 3(a)wehave foundUM ’
8� expð�w=dÞ, where� andd are respectively the chemical
potential and the healing length of the unperturbed BEC.
From Fig. 3(a) it also appears that increasing the size of the
EB not only moves the position of the maximum dissipation
to higher values of I, but also increases the number of
produced ions for a given current, and reduces or washes
out the effect of the reflection. Clearly, when U ¼
�h�ð0Þ=2>UM, a decrease of the probe size (an increase of
the resolution) leads to a lower production of ions, making
the system more resistant to the environmental action.

Comparison to classical systems.—To ascertain to which
extent our observations are peculiar to the wave nature of
the BEC, we have repeated the experiment on a thermal gas
of 4� 105 atoms at 1 �K with a beam of w ¼ 170 nm.
The results are reported in Fig. 3(b), where a simple
monotonic behavior is observed. Such data are well repro-
duced by a classical molecular dynamics simulation, which
includes the dissipation induced by the EB [11]. We then
extend the classical simulation to an atomic cloud which
has the same density, number of atoms, and trapping
frequency as our BEC. Even though this does not represent
any real physical system, it is instructive to compare the
behavior of a quantum system with its hypothetical classi-
cal analogue. This comparison is made in Fig. 3(c), where
the monotonicity of the classical case is confirmed. From
this we can conclude that the observed nonmonotonicity is
a purely quantum effect stemming from the macroscopic
wave nature of the BEC [18]. Moreover it is evident that

the effect of the quantum reflection from the imaginary
potential leads to a suppression of dissipation in the quan-
tum case, which is already notable for very low currents.
Dissipative dynamics.—In order to gain a deeper insight

into the dissipation-induced dynamics, we now look in
detail at the time-resolved signals coming from the ion
detector, reported in Fig. 4(a). Initially the number of ions
produced is well described by the exponential decay
expð�t ��Þ, �� being the effective dissipation rate [11]. In
Fig. 4(b) we show the integral of the signals in the first
5 �s, together with the simulated values as a function of
the EB current. In this phase, where no paradoxical behav-
ior is either observed or expected, the EB burns a hole in
the BEC wave function [see Fig. 4(d)], defining a clear
border between the space ‘‘inside’’ the hole and that ‘‘out-
side.’’ Thereafter, the number of ions produced becomes
almost constant, signaling the onset of a quasistationary
dynamics [19]. In this second phase, the reaction of the
quantum system to the external perturbation takes
place. When the strength of the dissipation is increased,
the ‘‘outside’’ wave function passes from a situation of
almost total transmission to a situation where reflection
takes the leading role. The nonmonotonic dependence on
the dissipation strength then becomes apparent [see
Fig. 4(c)]. This represents the first experimental observa-
tion of the so-called backflow paradox [20], i.e., of the
onset of a temporary reflection from a localized perfect
absorber. The curves plotted in Figs. 2 and 3 are then
the sum of different contributions like those in Figs. 4(b)
and 4(c).
Dissipation as continuous measurement.—Finally we

demonstrate that the controlled dissipation is equivalent
to a local measurement of the BEC density, i.e., of the
squared modulus of its wave function. Starting from

Eq. (1) and defining � ¼ c =
ffiffiffiffi
N

p
, where N is the number

of atoms, after some algebra we obtain the equation

dNðtÞ
dt

¼ �NðtÞ
Z

�ðxÞj�ðx; tÞj2dx: (2)

The number of ions produced in a time interval�t around a

certain time t is �NiðtÞ ¼ �
Rtþ�t=2
t��t=2 jdNðtÞ=dtjdt. Hence

we can conclude that what we perform is a direct measure-
ment of the BEC density jc ðtÞj2 in the region illuminated
by the EB, as in Refs. [14,16]. Since the seminal trilogy on
the time of arrival in quantum mechanics [17], imaginary
potentials have been linked to the action of a measurement
apparatus while later refinements [21] formally demon-
strated the equivalence between a pulsed measurement
with period �t and a continuous dissipative potential U,
provided that �t ’ �h=U. Our findings represent the experi-
mental verification of the equivalence between the action
of an imaginary potential and the one of a measurement
apparatus on a quantum system. Indeed we show that a
continuous measurement of the BEC density is nicely
reproduced by introducing an imaginary potential in the

FIG. 3 (color online). (a) Theoretical curves of the number of
ions produced in 5 ms as a function of U= �h solving Eq. (1) for
different values of w. The values of UM obtained using the
approximate expression given in the text are shown as open
diamonds over the corresponding curves. (b) Number of ions
measured after 5 ms of dissipation for a thermal cloud as a
function of the EB current, with w ¼ 170ð7Þ nm. The solid line
is the result of the corresponding numerical simulation using the
molecular dynamics method. (c) Comparison between the theo-
retical curves of the number of produced ions as a function of I
for the BEC and the corresponding (see text) classical analogue
[w ¼ 170ð7Þ nm].
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corresponding Schrödinger equation. Furthermore it is
well understood theoretically [22,23], and verified experi-
mentally [24–26], that performing continuous measure-
ments strongly modifies the pre-existing dynamics of a
quantum system. This is known as the Zeno (or inverse-
Zeno) effect. In general, measurements are mainly per-
formed on nondecaying systems and an extension of the
standard definition to such systems is needed. In our case
no pre-existing dynamics is present, since in the absence of
the EB, the BEC is at rest. We have shown that the action of
the continuous dissipative potential, or of the continuous
measurement, strongly modifies the output of the measure-
ment itself. In analogy with the standard definition we
define dissipation induced Zeno dynamics (DZD) when
dNiðtÞ=dU < 0, NiðtÞ being the number of ions produced
in the time t, and dissipation induced simple dynamics
when dNiðtÞ=dU > 0. These definitions appear to be the
natural extension of the standard ones, since the onset of
the DZD requires large values of U ¼ �h�ð0Þ=2, which
corresponds to pulsed measurements with small �t [21].
From the definitions it follows that the dissipation induced
simple dynamics is observed where the dynamics is domi-
nated by the Hamiltonian term of the Lindblad master
equation, while the onset of the DZD corresponds to a
dynamics governed by the dissipative term. We note that
an effect resembling the DZD has been observed also in a
system of decaying molecules in one dimension [27] and in
an attractive Mott-insulator state [28].

Conclusion and outlook.—We have experimentally
demonstrated the implementation of an open many-body
quantum system whose Hamiltonian and dissipative

dynamics can be independently and accurately controlled.
In the case of extremely strong and localized dissipation
this can lead to the creation of dissipation-resistant states.
The possibility to create such states in a controlled fashion
can give new insights for engineering generalized environ-
mental dark states. These kinds of states are of fundamental
interest and can possibly have practical applications in
quantum computation schemes [29]. And in as much as
our technique exploits the demonstrated link between
dissipation and measurement, it can be used to address
fundamental issues in quantum mechanics, like the defini-
tion of the time of arrival [17]. The dissipation mechanism
studied in the present Letter is also particularly suited for
lattice systems [30], thanks to its localized character and
hence to the ability to selectively control the dissipation in
a single lattice site. Indeed the use of the EB offers the
unique possibility to create and study long-living exotic
states in optical lattices [13] and to characterize the inter-
play between dissipation and interactions (see the
Supplemental Material [11] and Refs. [12,31]), and so
would give access to the engineering of quantum phases
in open quantum systems [32].
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FIG. 4 (color online). (a) Temporal resolved signal of the arrival time of the ions on the ion detector for different values of the EB
current I for w ¼ 170ð7Þ nm. In order to enhance readability the data have been plotted with a binning of 50 �s. The insets (b) and
(c) show the integrals of the signal in the shaded areas (the first 5 �s and from 1 to 5 ms, respectively) for different values of I together
with the theoretical calculations obtained solving Eq. (1). (d) Points: scanning electron microscopy image of the BEC profile along the
weak confining axis of the optical trap. The profile is the integrated column density along the direction of propagation of the EB. The
scan is made after 1 ms of dissipation. The EB parameters are I ¼ 150 nA and w ¼ 106ð5Þ nm. The depletion of the density is visible
in the origin, i.e., in the center of the BEC. The solid line is the profile obtained numerically solving Eq. (1).
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