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Topological Transition of Dirac Points in a Microwave Experiment
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By means of a microwave tight-binding analogue experiment of a graphenelike lattice, we observe a
topological transition between a phase with a pointlike band gap characteristic of massless Dirac fermions
and a gapped phase. By applying a controlled anisotropy on the structure, we investigate the transition
directly via density of states measurements. The wave function associated with each eigenvalue is mapped
and reveals new states at the Dirac point, localized on the armchair edges. We find that with increasing
anisotropy, these new states are more and more localized at the edges.
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Introduction.—Recently discovered condensed matter
systems, such as graphene [1] or topological insulators
[2], constitute an ideal playground to investigate the physics
of massless Dirac fermions until now restricted to high
energy physics. Indeed, the relativistic spectrum emerges
at the conical intersection points, the so-called Dirac points,
in the low energy electronic dispersion relation. The large
potential of technological applications [3] depends cru-
cially on the properties of these quasiparticles. The manipu-
lation of the Dirac points by external parameters—from
creation to annihilation—has recently attracted significant
attention both theoretically [4—7] and experimentally [8,9].
By controlling the anisotropy of a honeycomb lattice, one
can in principle move the Dirac points up to a transition
where they merge and annihilate each other. This is a
topological transition since both Dirac points are charac-
terized by opposite topological numbers (opposite Berry
phases) which annihilate at the transition. If the anisotropy
is increased further, a band gap opens in the dispersion
relation. This transition from a gapless (Dirac) phase to a
gapped phase corresponds to a Lifshitz phase transition
from a semimetallic to an insulating phase [4-7]. The
experimental investigation of this transition is difficult to
perform with condensed matter systems, e.g., graphene
under uniaxial strain [ 10] or quasi-two-dimensional organic
conductors under pressure [11]. Artificial systems such as
molecular graphene or ultracold atoms in optical lattices
have been recently proposed to experimentally probe this
topological transition [8,9]. While this effect has not been
clearly observed with molecular graphene [9], Ref. [8]
reports the observation, using momentum-resolved inter-
band transitions, of Dirac points merging with a Fermi
gas in an anisotropic honeycomb lattice without sixfold
symmetry.

Alternatively, discrete photonic systems (e.g., photonic
lattices or microwave cavities), with graphenelike struc-
tures, have been employed as condensed-matter analogues
[12-15]. In microwave experiments, the tight-binding form
of graphene’s Hamiltonian [16] can be established by using
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a honeycomb lattice of evanescently coupled dielectric
resonators [14,15]. Dirac points and signature of the linear
dispersion relation have been observed [13-15].

In this Letter, we take advantage of the high versatility of
our tight-binding microwave setup to explore the topologi-
cal phase transition. The anisotropy of the honeycomb
lattice is controlled through the nearest-neighbor hopping
parameters. We directly measure the density of states
(DOS) and the wave function associated with each eigen-
value. We observe a transition between the Dirac phase and
the gapped phase exactly for the expected value of the
anisotropy parameter defined in a tight-binding descrip-
tion. This is the first direct DOS measurement of this
topological transition. Moreover the experimental setup
allows a very fine manipulation of the edges and a control
of edge states that is not yet possible in condensed matter
systems. We show that the anisotropy generates new states,
at the Dirac frequency vp, localized along specific arm-
chair edges. With increasing anisotropy, their extension
into the bulk decreases.

Experimental microwave graphene analogue.—For our
experiments, we use a set of 222 identical coupled dielec-
tric cylindrical resonators (5 mm height, 8 mm diameter,
and a refractive index of 6), hereafter called discs, placed
in between two metallic plates. We establish a two-
dimensional tight-binding regime, where the electromag-
netic field is mostly confined within the discs and spreads
out evanescently. The experimental details are described in
Refs. [14,15]. Via a movable loop-antenna, the reflected
signal S|, is measured over a given frequency range at
the disc positions r using a vectorial network analyzer. The
bare frequency v of an isolated disc (~ 6.65 GHz in the
setup considered here) corresponds to the on-site energy
appearing in the tight-binding Hamiltonian. The coupling
parameter /., between two adjacent discs depends on the
disc separation d and can be described, as expected for a
two-dimensional system, by a modified Bessel function K
(see Table I). Thus, by changing the distance between
discs, one can change, in a controllable manner, the
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TABLE 1. Experimental anisotropy parameter B = t/y/fexp-
For the regular lattice (i.e., B =1), d =15 mm and ., =
0.016 GHz. The intersite distances d’ and the corresponding
nearest-neighbor coupling values Bf.,, are also indicated.

d' (mm) Bleyy" (GHz) B
15.0 0.015 1

13.9 0.020 1.3
13.0 0.027 1.8
12.6 0.030 2

12.0 0.037 2.5
11.0 0.053 35

*Obtained according to the Bessel fit 7., (d) = a|Ko(yd/2)[* + 6.

a = 1.9545 GHz, y = 0.3167 mm™~! and § = 0.0049 GHz have
been experimentally determined [17].

intersite couplings. For a lattice composed of many discs,
the setup allows for direct access to the local density of
states through the measured quantity S, [14,15]. The DOS
is obtained by averaging over all positions r. Moreover, our
setup allows us to visualize the wave function associated
with each eigenfrequency [17].

Tight-binding description.—In order to interpret quanti-
tatively our experimental results, we present a tight-
binding model on an infinite hexagonal lattice with first,
second, and third nearest-neighbor couplings. The on-site
“energy’’ is given by the bare frequency v,. The hopping
amplitudes (in units of frequency) between nearest-
neighbor sites are called 7 along the y axis and ¢ along
the other directions [respectively, red and blue links on
Fig. 1(a)]. The next- (next-) nearest-neighbor couplings are
respectively denoted as t, and t;. The anisotropy of the
lattice can be simply taken into account via the first
nearest-neighbor coupling (i.e., '), and higher-order terms
are assumed to be unchanged (i.e., 1, =t and t; = ;). In
the basis of the two inequivalent sites forming the elemen-
tary cell, the Hamiltonian can be written in the Bloch
representation,

o [ oS f(k)+f3(k)>’
8 (f*(k)+f§(k) ot fok) )P

where f (respectively, f, and f3) is the first (respectively,
second and third) nearest-neighbor contribution, f(k)=
—(t' + te™ @ + 1% 22 respectively f,(k) = —2t,[cosk -
a; +cosk - a, + cosk - (a; —a,)], and f3(k)=
—ty[efk@ita) 4 pik-(a—a) 4 pik@-a1)] The frequency
spectrum is given by v(K) =y, + fo(kK) = |f(k) +
f3(k)| and consists of two bands touching at the Dirac
frequency vp = v + 3t,. The corresponding DOS are rep-
resented in Fig. 1 for different values of the anisotropy
parameter B8 = t'/t. For B8 =1, two Dirac cones exist
in k space at k = £Kj, = *=(a] — a3)/3, where a; are
reciprocal lattice vectors. For larger B, the Dirac points
move along the k, axis. A topological transition occurs at
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FIG. 1 (color online). Left panels: Schematics of the hexago-
nal lattices. a; and a, define the primitive cell of the Bravais
lattice. ¢ (blue intersite links) and ¢ (red ones, along y axis)
correspond to the nearest-neighbor couplings. d and d’ are the
corresponding distances. An anisotropy is introduced along the
y axis: ¢’ increases when d’ decreases. Right panels: Calculated
density of states (DOS) for an infinite system with first, second,
and third nearest-neighbor couplings given in the text. The red
dashed line is the Dirac frequency v, = v, + 3t,. The insets
show the corresponding dispersion relation. (a)—(b) Regular
honeycomb lattice, 8 = 1. The two Dirac points are distinguish-
able. (c)-(d) Compressed lattice at the topological transition,
B = 1.8. The Dirac points merge. (e)—(f) 8 = 3.5, a band gap
opens (gray zone).

B. = 2-3t3/t, where the two Dirac points coalesce [inset
Fig. 1(d)]. With the values of the coupling parameters
extracted from the experiments (see below), we find
B. = 1.8. For B larger than this critical value, the condition
v(K ) = v cannot be fulfilled: a gap opens [inset Fig. 1(f)].
As a consequence, the density of states is strongly affected.
The typical linear relation at the vicinity of the Dirac point
(red dashed line) observed for 8 = 1 [Fig. 1(b)] turns to a
square root law at the transition [Fig. 1(d)] [4,6]. Then a gap
opens for 8 > S, [gray zone in Fig. 1(f)]. Note that next-
(next-) nearest-neighbor couplings lead to (i) a lower value
of 8. for the transition (1.8 instead of 2 expected when only
the first nearest-neighbor coupling is taken into account
[4,6]), (i1) an asymmetry of the bands, (iii) a slight shift of
vp towards lower frequency, and (iv) a displacement of the
two logarithmic singularities.

Topological  transition and  gap  opening.—
Experimentally, we first realize a regular graphene lattice
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with an hexagonal shape which has only armchair bounda-
ries in order to eliminate edge states [see inset Fig. 2(a)].
We gradually add an anisotropy by increasing the coupling
tixp along the y axis—i.e., by decreasing the separation d’
between the discs along y (insets in Fig. 2). As detailed in
Table I, the anisotropy parameter 8 varies from 1 to 3.5.
The DOS corresponding, respectively, to 8 =1, 1.8 ;3.5
are depicted in Fig. 2. For the regular graphene, for which
d = d’' = 15 mm, the nonsymmetric band structure and
the pointlike gap at the Dirac frequency vp are observed
[Fig. 2(a)]. Here, due to the finite size of the system, the
expected linear behavior of the DOS near the Dirac point
appears only as a dip in the histogram. Moreover, the two
logarithmic singularities have their signature in this finite
sample (Fig. 2). By adjusting the calculated DOS shown
in Fig. 1(b) to the experimental one [17], the following
values for the three tight-binding coupling parameters are
obtained: r=0.016 GHz, t,/r= —0.091, and #; /¢t = 0.071.

DOS

DOS

6.55 6.6 6.65 6.7 6.75
v (GHz)

FIG. 2 (color online). Experimental DOS for (a) the regular
graphene (B = 1), (b) and (c) anisotropic structures with
B = 1.8 and B = 3.5, respectively. The dashed red lines indicate
the Dirac frequency vp. The gray zone shows the band gap with
edge states at vp.

This value of ¢ is in agreement with the Bessel fit of the
experimental coupling (see Table I).

Figures 2(b) and 2(c) show the evolution of the DOS
when the lattice is compressed. For large values of 3, a gap
opens as expected but additional states appear around vp,.
We will provide a description of these states, identified as
edge states, in the last part of the Letter. For an inspec-
tion of the topological transition, we eliminate their con-
tributions by averaging the signal over bulk sites only. In
Fig. 3(a), we plot the measured DOS obtained for six
different values of B using a white-blue color scale.
The dashed red line corresponds to the Dirac frequency
and the gray zone is used here to improve the visualization
of the band gap opening. These experimental results are
successfully compared with the DOS calculated for the
corresponding infinite systems [Fig. 3(b)]. We clearly
distinguish the topological transition between a gapless
phase and a gapped phase which occurs for 8. = 1.8, as
expected from the theoretical expression 8. = 2 — 313/t
and the tight-binding parameters given above. Before the

(a)

3.5 — lyp BTN
: I
L |
. I
2.5 D RIVE b D
Sat B \ : 25
2 T e b 5
1.8 — I "IE W N
1.3  EE D
1 — Il bW ] 0
6.55 6.6 6.65 6.7 6.75
(b) v (GHz)

-5 0 5
(v—wy)/t

FIG. 3 (color online). (a) Experimental DOS for B varying
from 1 to 3.5. To remove edges states and highlight the band gap
opening, the DOS have been averaged over bulk sites only. The
arrows at 8 =1, 1.8, and 3.5 indicate the DOS plotted, respec-
tively, in Figs. 2(a)-2(c), where the average was performed over
all sites. (b) Calculated DOS for B varying from 1 to 3.5 for an
infinite system. The arrows at 8 = 1, 1.8, and 3.5 indicate the
DOS plotted in Figs. 1(b), 1(d), and 1(f), respectively. In (a) and
(b), the gray zone shows the band gap opening, the dotted lines
denote the linear dependence of the band edges, and the red
dashed line indicates vp.
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(b)

FIG. 4 (color online).
from 1.3 to 3.5.

transition, the spectrum exhibits a pointlike gap. At the
transition, since the DOS close to the Dirac point is sup-
posed to switch from a linear to a square root behavior
[4,6], the number of states close to the Dirac point is
expected to increase. Due to the finite size of the lattice,
a small gap always exists, but a higher concentration of
states at vp is clearly seen, which reveals the topological
phase transition. Finally, above the transition a gap opens.
The gap and the bandwidths linearly increase with S
(respectively, the gray zone and the dotted lines in Fig. 3).

Edge states.—We now focus on the states that appear at
the Dirac frequency v, for anisotropic lattices (see Fig. 2).
The spatial distribution of these states is depicted in Fig. 4,
where it appears clearly that they are indeed edge states,
which may appear a priori surprising since armchair
boundaries are not expected to support edge states [18].
Their structure will be carefully studied in a future work,
but the following remarks are of immediate interest in this
Letter: (i) Edge states appear only along the edges that are
not parallel to the anisotropy axis. (ii) Their localization
along the edge increases when [ increases. (iii) Their
existence is not related to the topological transition
observed in Fig. 3: they appear as soon as 8 > 1. These
features are in agreement with the prediction for the exis-
tence of armchair edge states in deformed structures [19].
Moreover, we find that (i) the intensity on one triangular
sublattice stays zero, and (ii) the intensity on the other
sublattice decreases roughly as (1/8)*, where r is the
distance to the edge in units of the lattice parameter. A
more extensive investigation of these states, as well as of
the states along zig-zag and bearded edges in anisotropic
structures, is in progress.

Conclusion.—To conclude, we have exploited the high
flexibility of a microwave two-dimensional analogue of
strained graphene to experimentally demonstrate the exis-
tence of a topological transition between a gapless phase and
a gapped phase when the anisotropy increases. We have
investigated the spectral properties of this structure by
directly measuring the density of electromagnetic modes.
An appropriate description of this system requires us to
take into account not only first but also next- (next-)
nearest-neighbor couplings. The wave functions associated

(c)

B=35 0

Experimental wave function distributions at the Dirac frequency v (red dashed line in Fig. 3) for 8 ranging

with the states appearing at the Dirac frequency are easily
measurable with our setup, and they reveal the presence of
edge states along the armchair edges. They become more and
more localized along the edges as the anisotropy is increased.
Finally, the versatility of the setup allows us to mimic many
of the spectacular properties of graphene and to reveal many
other physical phenomena, such as the influence of pseudo-
magnetic fields and associated Landau levels induced by a
specific strain in graphenelike lattices [20].
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