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We study the transverse expansion of arrays of ultracold 87Rb atoms weakly confined in tubes created

by a 2D optical lattice and observe that transverse expansion is delayed because of mutual atom

interactions. A mean-field model of a coupled array shows that atoms become localized within a roughly

square fortlike self-trapping barrier with time-evolving edges. But the observed dynamics are poorly

described by the mean-field model. The theoretical introduction of random phase fluctuations among

tubes improves the agreement with experiment but does not correctly predict the density at which the

atoms start to expand with larger lattice depths. Our results suggest a new type of self-trapping, where

quantum correlations suppress tunneling even when there are no density gradients.
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Ultracold atomic gases trapped by light are well-
characterized many-body quantum systems. Without the
disorder that is common in condensed matter systems,
theoretical analyses of cold gases in equilibrium can be
extremely accurate, although high powered numerical
techniques must sometimes be employed [1]. Cold gas
experiments are also well suited to studying out-of-
equilibrium dynamics, such as the evolution of many-body
correlations, since experimental time scales are relatively
slowyet faster than typical relaxation and decoherence rates
[2–4]. Significant progress in the description of the out-
of-equilibrium dynamics of 1D bosonic and fermionic sys-
tems has been achieved thanks to the existence of exact
solutions [5] and the development of numerical methods
such as the time-dependent density-matrix renormalization
group [6] and time-evolving block decimation [7] methods.
Those approaches fail in 2D and higher dimensions, where
most out-of-equilibrium calculations rely on approximate
analytical techniques that are generally restricted to the
weak interaction regime [8]. The experiment-theory com-
parisons in this Letter illustrate the limitations of these
approximate approaches. The difficulty of improving on
these approximations highlights the need for more compu-
tationally tractable methods for dealing with intermediate
coupling. The particular way the theory deviates from the
experiment strongly suggests a qualitatively new nonequi-
librium effect.

Macroscopic self-trapping in quantum degenerate Bose
gases, where mean-field energy gradients suppress tunnel-
ing, presents an interesting set of nonequilibrium phe-
nomena, with analogs in nonlinear photon optics [9,10]

and Josephson junction arrays [11]. Self-trapping has been
studied theoretically in all dimensions [12–20] and experi-
mentally in double-well systems [21] and in arrays of 2D
pancakelike Bose-Einstein condensates (BECs) created by
a deep 1D lattice potential [22]. These self-trapping experi-
ments are in the weak coupling limit, where mean-field
theory clearly applies. In this Letter, we experimentally
and theoretically investigate self-trapping behavior in an
array of coupled quasi-1D tubes created by a 2D optical
lattice. Atoms freely expand along the axes of the tubes, so
that their densities decrease with time, until they eventually
become too dilute for self-trapping and expand ballistically
transversely to the tubes. In contrast to previous self-
trapping work, our quasi-1D gases are in the intermediate
coupling regime [23]. To provide a baseline theoretical
description of our experiments, we build a mean-field model
of expanding coupled 1D gases. We then incorporate fluc-
tuations into our mean-field treatment via an approximation
to the so-called truncated Wigner approximation (TWA)
[8,24] by introducing random tube-to-tube phase fluctua-
tions with a tunable magnitude at the initial time of the
evolution. At low lattice depths, small phase fluctuations
improve the agreement with the experiment, while the
dynamics in deeper lattices are better described when the
phases are maximally randomized. Still, the self-trapping
seen in the experiment is more widespread across the array
and persists to at least 3 times lower densities than even
maximally randomized mean-field-based models predict.
We postulate a new kind of self-trapping mechanism, based
on correlation-suppressed tunneling, that does not depend
on density or phase gradients.
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It is instructive to first describe the pure mean-field
theory evolution qualitatively. In an initially 2D Thomas-
Fermi profile, there is a critical distance along the lattice
directions at which the mean-field imbalance between
adjacent tubes is too large for tunneling to conserve energy.
Atoms at larger radii will not tunnel radially outward,
while atoms at smaller radii will start to expand, at some
point reflecting from the self-trapped edge. Atoms at 45� to
the lattice axes are first self-trapped at larger radii since
their density gradients are smaller in the lattice directions.
The distributions therefore develop a density depression in
the middle with a roughly square fortlike barrier around the
edges. Since all atoms tunnel in some lattice direction, the
self-trapped edges evolve with time. In the absence of axial
trapping, densities, and hence tube-to-tube density gra-
dients, drop. Self-trapped edges are eventually lost, leaving
the cloud to expand ballistically in the (x, y) plane.

Details of the experimental setup are given in Ref. [25],
and the experimental geometry is depicted in Fig. 1(a). A
BEC with a barely detectable impurity fraction and
N � 3:5� 105 87Rb atoms in the jF ¼ 1; mF ¼ 1i state
is produced in a crossed-optical-dipole trap, created by the
intersection of two 1:06 �m wavelength horizontal laser
beams. The trapping frequencies experienced by the
BEC are !x;y ¼ 2�� 38 Hz in the horizontal plane and

!z¼2��94Hz vertically. A vertical magnetic field gra-
dient of 30:5 G=cm levitates the atoms. A two-dimensional
square optical lattice is created using two slightly different
frequency pairs of linearly polarized retroreflected beams
with 1=e2 widths of 650 and 705 �m, blue-detuned by
5.2 THz from the D2 transition in 87Rb. The 2D lattice is
ramped up in time according to IðtÞ / ½1� ðt=�Þ��2, where
I is the lattice intensity and � ¼ 4:15 ms is the time
constant. Nonadiabaticity in the lattice turn-on, measured
by turning off the lattice with the reverse ramp, adds less
than 4 nK � kB of energy, which is small compared to the
1D chemical potential (150–250 nK � kB).

After the lattice is turned on, the crossed-dipole
trap beams are suddenly turned off so that the atomic

distribution evolves in the 2D lattice alone. After a time
t, we image the in situ spatial distribution of the cloud
using high-intensity absorption imaging [26]. This tech-
nique involves illuminating the atoms with a resonant
probe beam with intensity I � Isat, where Isat is the satu-
ration intensity. After the beam passes through the atomic
cloud, it is blocked by a 400 �m diameter dark spot in the
Fourier plane of a one-to-one imaging system. Using
Babinet’s principle, one can show that the detected signal
is proportional to n2, or the square of the atomic density
distribution integrated along the line of sight [26]. We use
this technique because it is less sensitive than most to
lensing by dense atomic clouds. Still, we see a 10% root-
mean-square (rms) width change due to lensing at our
highest densities, for which we correct by observing the
axial expansion in a 35ER lattice, where there is no trans-
verse expansion. ER ¼ @

2k2=2M is the recoil energy and
M is the atomic mass.
Images along the z axis show no self-trapping depres-

sions, although our imaging system could resolve them if
they were there. Instead, when viewed from along z or
transversely 45� from the lattice axes, the integrated
density-squared profiles are featureless and well fitted by
Gaussians. All data displayed below were taken from the
side view. We integrate the distributions over the central
�10% of the vertical Thomas-Fermi radius so that the atoms
we consider within each tube have approximately the same
density.Wefit the resulting 1Ddistribution to aGaussian and
extract�n2 , the transverse rmswidth. In Fig. 1(b), we plot an
example of how the transversely integrated axial peak den-
sity varies with time, which we derive from measuring the
axial expansion of atoms. In Fig. 2, we display �n2 as a
function of evolution time in the 2D lattice for lattice depths
of V0 ¼ ð7:25; 9:25; 11; 13ÞER (uncertainty�2:5%).
The behavior of �n2 is qualitatively different for

V0 ¼ 7:25ER compared to larger lattice depths. For
V0 ¼ 7:25ER, the rms width of the cloud increases quickly
from t ¼ 0 and slows near t ¼ 5 ms, where the curve
changes its concavity. For V0 ¼ 9:25, 11, and 13ER, the
rms width remains constant to within experimental uncer-
tainty for t < tc or until the density drops by a factor of	4,
8, and 10, respectively. For t > tc, the rms width increases
linearly in time. We estimate that tc ¼ f4:5� 1:0; 8:5�
1:5; 11� 2g ms for V0=ER ¼ f9:25; 11; 13g and plot the
mean value of the t < tc data as a horizontal red line in
Figs. 2(b)–2(d). We can associate with the time tc a 3D
density at the center of the cloud,�ðtcÞ.Wefind that the ratio
�ðtcÞ=J¼ f1190� 310;860� 190;910� 210g �m�3E�1

R ,

where J is the tunneling matrix element. The rough con-
stancy of this ratio is in accord with the general concept of a
self-trapping threshold [15], but the absence of an initial
internal expansion shows that the pure mean-field descrip-
tion is incomplete.
The starting point for our mean-field theory is the Gross-

Pitaevskii equation (GPE),
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FIG. 1 (color online). (a) Experimental setup (not to scale):
Atom clouds are confined in a crossed-dipole trap and parti-
tioned by a blue-detuned optical lattice into a coupled array of
vertical tubes. (b) Peak transversely integrated axial density as a
function of time for V0 ¼ 13ER. The linear density drops rapidly
with time as the atoms expand axially, mostly driven initially by
their mutual interaction energy.
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Here, � ¼ �ð ~x; tÞ is the matter wave field, g ¼ 4�as@
2

M , as
is the s-wave scattering length, V ¼ V0½sin2ð�x=dÞ þ
sin2ð�y=dÞ� is the optical lattice potential, and d is the
lattice spacing.

The wave field �ð ~x; tÞ can be expanded in terms of the
lowest band Wannier functions along the optical lattice
directions:

�ð ~x; tÞ ¼ X
n;m

Wn;mðx; yÞ�n;mðz; tÞ: (2)

Nn;mðtÞ ¼
R
dzj�n;mðz; tÞj2 is the number of atoms at the

site (n, m), satisfying
P

n;mNn;m ¼ N, with N the total

number of atoms. Wn;mðx; yÞ is the lowest band Wannier

orbital localized at site (n, m).
Using the ansatz in Eq. (2) and integrating within each

tube over the lattice directions (x and y), we get a set of
coupled 1D GPEs:

i@ _�n;m¼
�
� @

2

2M

@2

@2z
þU
dj�n;mj2

�
�n;m

�J½�nþ1;mþ�n�1;mþ�n;mþ1þ�n;m�1�; (3)

where �n;m ¼ �n;mðz; tÞ, J ¼ R
d2xW


n;m½ @22M r2 � V��
Wnþ1;m is the nearest-neighbor tunneling, and

U ¼ 4�as@
2

dM

R
d2xjWn;mj4 is the on site interaction

energy. We numerically solve the GPEs by discretizing
them along z and calculating the kinetic energy term
using a Fourier transform method. The widths obtained by
assuming full adiabaticity during the lattice turn-on are larger
than the experimentally observedwidths.We thereforematch
the initial transverse width to the experimentally observed
value and adjust the initial axial size so that the energy
released in the axial expansion matches the experimental
value.
In the mean-field simulation [27], the central part of the

atom cloud starts to expand at t ¼ 0. Within several ms, a
roughly square fortlike structure forms [see Fig. 3(a)].
Outwardly moving atoms cannot pass the steep density
gradient and they reflect back. The self-trapped edges
evolve, leading to a complicated and ever-changing density
distribution near the edges and a slow spreading of the
outer atoms. With axial expansion, the interaction
energy differences between adjacent tubes eventually
become smaller than the tunneling energy, and the cloud
expands ballistically at a constant rate in the transverse
direction.
In order to compare the simulation with the experimen-

tally measured rms widths, we extract widths from the
simulated distributions in a way that mimics the measure-
ment process (i.e., we square the density distribution and
convolve it with a Gaussian of rms width 1:7 �m, the
imaging system resolution). This process removes fine
features from the theoretical curves that are not resolvable
in the experiment, but it does not guarantee that the theo-
retical distributions are well fitted by Gaussians. In fact, the
pure mean-field theory calculations retain clear evidence of
self-trapped squares even after this processing [27]. The
theoretical rms widths are shown as dashed blue lines in
Fig. 2. For all lattice depths presented, the agreement is
poor. For V0 ¼ 7:25ER, the mean-field calculation captures
the qualitative dynamics but overestimates the expansion
rate at early times. For V0 ¼ 9:25, 11, and 13ER, the
calculation does not capture the qualitative dynamics. It
greatly overestimates the initial expansion rates and pre-
dicts that the rms width increases much more slowly during
the later ballistic expansion than is observed.
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FIG. 2 (color online). Transverse rms widths of the directly
measured density-squared distributions as a function of time for
(a) V0 ¼ 7:25ER, (b) 9:25ER, (c) 11ER, and (d) 13ER. Each data
point is the average of 10measurements. The error bars represent our
randomuncertaintyandare thequadrature sumof the statistical noise
and the uncertainty from the density dependence of the absorption
beam lensing. There is an overall systematic uncertainty of 0:5 �m
associated with the imaging resolution; comparable shifts of the
initial size simply shift the theoretical curves at early times (below
10 ms), followed by a gradual divergence of the curves at longer
times.Thedashedblue line is the result of amean-field calculationof
the dynamicswith no randomphase between the tubes (� ¼ 0). The
dotted purple line is for� ¼ 0:2, the dash-dotted green lines are for
(a)� ¼ 0:4 and (b)� ¼ 0:5, and the solid orange line is for� ¼ 1.
The horizontal red line is the mean of the t < tc data.
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FIG. 3 (color online). Transverse density distributions 12.4 ms
after release for V0 ¼ 13ER. (a) � ¼ 0; (b) � ¼ 1.
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The mean-field treatment neglects thermal and quantum
fluctuations, which can play large roles in the intermediate
coupling limit. We note that it is hard to adiabatically
transform a 3D gas into a 1D gas in theory [28], and there
is some irreversibility in turning on the lattice. Although
the system is therefore not initially in its ground state, the
observed dynamics are fairly insensitive to the lattice turn-
on and the purity of the initial BEC, making quantum
fluctuations the better candidate for the missing piece of
the model. If we ignore tunneling and calculate the initial
coupling strength, � [29], of atoms near where atoms are
predicted by mean-field theory to have a self-trapped edge,
it varies from 0.2 to 0.31 for V0 ¼ 7:25ER and from 0.32 to
0.5 for 13ER. Higher coupling implies larger phase varia-
tion along a tube. For small V0, coherence among the tubes
is maintained by tunneling. But, as V0 is increased and the
tubes become more 1D, phase fluctuations along each tube
will give rise to phase fluctuations from tube to tube.

The TWA gives leading order quantum corrections to
classical dynamics by adding fluctuations to the initial
conditions, distributed according to the Wigner function.
Since our initial state has moderately strong interactions,
the Wigner distribution is difficult to find. We therefore
attempt to model emerging intertube fluctuations with an
approximate TWA. Specifically, we introduce phase fluc-
tuations into the initial conditions by adding random
phases among the tubes: �n;mðt ¼ 0Þ ! 2���, where

�n;mð0Þ is the initial phase of the tube at lattice site

(n, m), � is a uniformly distributed random variable
between 0 and 1, and � parametrizes the strength of the
phase fluctuations. Within each tube, the gas is still
described by mean-field theory, so this approximate TWA
ignores correlations within a tube, except in so far as these
lead to intertube phase fluctuations. When � ¼ 0, the
initial conditions correspond to a fully coherent array of
1D gases and, when � ¼ 1, we have a totally randomized,
initially incoherent array.

As long as � * 0:4, the squared and convolved theo-
retical distributions fit fairly well to Gaussians. We average
the results from 20 randomized phase implementations and
display the rms widths in Fig. 2 for various � values. For
V0 ¼ 7:25ER, � ’ 0:4 best fits the early evolution, when
there is self-trapping. For larger V0, � ¼ 1 clearly fits the
early evolution best. Randomized phases cause initially
random tunneling current directions throughout the tube
array. Site-to-site density fluctuations rapidly develop, as
seen in Fig. 3(b). Since there is no reflection from relatively
sharp self-trapped edges, the acceleration of the cloud does
not go negative (as it briefly does for � ¼ 0) but instead
asymptotically approaches zero from above. Self-trapping
is still lost when the density drops below a V0-dependent
critical value.

Although the modeled curves with the appropriate � are
never too far from the observed ones for V0 ¼ 11ER and
13ER, the experiment shows a more sudden and more

delayed onset of ballistic expansion than the model.
Adding fluctuations in the initial atom number barely
changes the curves. Assuming a normal error distribution,
the p value is only 2� 10�7 (6� 10�19) that the points
between 0 and 8 (12) ms in the V0 ¼ 11ER (13ER) curves
are consistent with mean-field theory with maximal fluc-
tuations. In contrast, the p value is 0.45 (0.15) for them to
lie on a horizontal line. The data suggest that self-trapping
occurs throughout the array and persists until the central
density has dropped by at least a factor of 8, which is a
factor of 3 lower than the density at which the modified
mean-field theory predicts expansion would be visible.
Detailed two-body correlations within each tube may be

responsible. As the 2D lattice is turned on, correlations
develop that make atoms avoid each other, at a kinetic
energy cost, in order to avoid a larger mean-field energy
cost. Since the wave function of a tunneling atom will not
in general be appropriately correlated with the atoms in an
adjacent tube, it would have to pay much of the mean-field
energy cost that the correlations avoid. If that additional
energy exceeds the tunneling energy, tunneling cannot
proceed. In the strong coupling limit, correlation-
suppressed tunneling is similar to Pauli blocking. It does
not require density gradients, which is why the expansion
of the central part of the tube bundle is fully suppressed
until the overall density, and hence the mean-field cost of
tunneling, gets sufficiently small. We speculate that such a
process might tend to suppress mass transport whenever
there is intermediate or strong coupling, regardless of the
dimension [30,31].
In conclusion,we havemeasured the transverse expansion

of quasi-1D arrays of atoms in the intermediate coupling
regime. We find coarse agreement with a mean-field model
when we introduce intertube phase fluctuations to the initial
conditions. Modest phase fluctuations make the theory agree
with experiment for V0 ¼ 7:25ER for short times. For larger
V0, agreement with experiment is best with maximal initial
phase fluctuations among tubes, which slow down the initial
transverse expansion. However, the experiment shows even
less initial expansion, which suggests that there is strong
self-trapping of a qualitatively different type, perhaps due
to microscopic quantum correlations. This behavior could in
principle be captured by a full TWA calculation that includes
intratube quantum correlations [19]. However, it may be
difficult to obtain the complete initial 3D Wigner distribu-
tion, and it is not clear that high order corrections will not
limit the calculation before the ballistic regime is reached.
More work is needed to quantitatively model tunneling
behavior in this quantum many-body regime.
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