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Neutron matter presents a unique system for chiral effective field theory because all many-body forces

among neutrons are predicted to next-to-next-to-next-to-leading order (N3LO). We present the first

complete N3LO calculation of the neutron matter energy. This includes the subleading three-nucleon

forces for the first time and all leading four-nucleon forces. We find relatively large contributions from

N3LO three-nucleon forces. Our results provide constraints for neutron-rich matter in astrophysics with

controlled theoretical uncertainties.
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The physics of neutron matter ranges from universal
properties at low densities to the structure of extreme
neutron-rich nuclei and the densest matter we know to
exist in neutron stars. For these extreme conditions, con-
trolled calculations with theoretical error estimates are
essential. Chiral effective field theory (EFT) provides
such a systematic expansion for nuclear forces [1]. This
is particularly exciting for neutron matter and neutron-rich
systems, because all three- (3N) and four-neutron (4N)
forces are predicted to next-to-next-to-next-to-leading
order (N3LO) [2].

Neutron matter based on chiral EFT has been studied
using lattice simulations [3] at low densities, n & n0=10
(with saturation density n0 ¼ 0:16 fm�3), and following
an in-medium chiral perturbation theory approach [4,5],
where low-energy couplings are adjusted to empirical nu-
clear matter properties. In addition, the renormalization
group (RG) has been used to evolve chiral EFT interactions
to low momenta [6], which has enabled perturbative cal-
culations for nucleonic matter [2,7]. While these constrain
the properties of neutron-rich matter to a much higher
degree than is reflected in neutron star modeling [8], the
dominant uncertainties are due to 3N forces, which were
included only to N2LO. A consistent inclusion of higher-
order many-body forces is therefore key.

Here we present the first calculations at nuclear densities
based directly on chiral EFT interactions without RG
evolution. To this end, we have studied the perturbative
convergence of chiral two-nucleon (NN) potentials for
neutron matter in detail, and found that the available
N2LO and N3LO potentials with lower cutoffs � ¼
450–500 MeV are perturbative. This is supported by small
Weinberg eigenvalues at low energies indicating the per-
turbative convergence in the particle-particle channel [6].
In neutron matter, it comes as a result of effective-range
effects [9], which weaken NN interactions at higher
momenta, combined with weaker tensor forces among
neutrons, and with limited phase space at finite density
due to Pauli blocking [10].

At the NN level we use the N2LO and N3LO potentials
developed by Epelbaum, Glöckle and Meißner (EGM)

[11] with �=~� ¼ 450=500 and 450=700 MeV (�=~�
denotes the cutoff in the Lippmann-Schwinger equation
and in the two-pion-exchange spectral-function regulari-
zation, respectively). We also use the � ¼ 500 MeV
N3LO NN potential of Entem and Machleidt (EM)
[12], which is most commonly used in nuclear structure
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FIG. 1 (color online). Neutron matter energy per particle as a
function of density including NN, 3N, and 4N forces at N3LO.
The three overlapping bands are labeled by the different NN
potentials and include uncertainty estimates due to the many-
body calculation, the low-energy ci constants, and by varying the
3N=4N cutoffs (see text for details). For comparison, results are
shown at low densities (see also the inset) from NLO lattice [3]
and quantum Monte Carlo (QMC) simulations [22], and at
nuclear densities from variational (APR, the different points
are with or without boost corrections) [23] and auxiliary field
diffusion MC calculations (GCR) [24] based on adjusted nuclear
force models.
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calculations. The larger � ¼ 550–600 MeV NN poten-
tials of EGM and EM have been found to be nonpertur-
bative [13] and are therefore not included. Moreover,
the leading-order NN contact couplings in the 600=600
and 600=700 EGM potentials break Wigner symmetry
perturbatively (at the interaction level), with a repulsive
spin-independent CS and an unnaturally large spin-
dependent CT � CS, leading to unexpectedly large
CT-dependent 3N forces.

In this Letter, we include for the first time all N3LO 3N
and 4N forces, which have been derived only recently
[14–17], in addition to theN2LO 3N forces. Figure 1 shows
our complete N3LO calculation of the neutron matter
energy as our main result, where the bands include esti-
mates of the theoretical uncertainties due to the many-body
calculation and in the many-body forces.

For neutrons, only the two-pion-exchange 3N forces
contribute at N2LO [2]. For the corresponding low-energy
constants c1 and c3, we take the range of values
from a high-order analysis [18], at N2LO: c1 ¼
�ð0:37–0:81Þ GeV�1 and c3 ¼ �ð2:71–3:40Þ GeV�1

(which includes the ci values in the EGM and EM NN
potentials), and when the N2LO 3N forces are included
in a N3LO calculation: c1 ¼ �ð0:75–1:13Þ GeV�1 and

c3 ¼ �ð4:77–5:51Þ GeV�1. It has been shown [2] that
the N2LO 3N force contributions in neutron matter can
be to a good approximation calculated at the Hartree-Fock
level. In this first calculation, we therefore evaluate the
N3LO 3N and 4N force contributions to the energy per
particle E=N at the Hartree-Fock level. The A-body con-
tributions are then given by
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with shorthand notation i � ki�i.AA denotes the A-body
antisymmetrizer and nki

¼ �ðkF � kiÞ the Fermi-Dirac dis-

tributions at zero temperature. We use a Jacobi-momenta
regulator, in terms of ki given by fR ¼ expf�½ðk21 þ � � � þ
k2A � k1 � k2 � � � � � kA�1 � kAÞ=ðA�2Þ�nexpg, with nexp ¼
4 and 3N=4N cutoff � ¼ 2–2:5fm�1. For the nucleon
and pion mass, we use m ¼ 938:92 MeV and m� ¼
138:04 MeV, and for the axial coupling gA ¼ 1:29 and
the pion decay constant f� ¼ 92:4 MeV.
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FIG. 2 (color online). Energy per particle versus density for all individual N3LO 3N and 4N force contributions to neutron matter at
the Hartree-Fock level. The bands are obtained by varying the 3N=4N cutoff� ¼ 2–2:5 fm�1. For the two-pion-exchange–contact and
the relativistic-corrections 3N forces, the different bands correspond to the different NN contacts, CT and CS, determined consistently
for the N3LO EM or EGM potentials. The inset diagram illustrates the 3N=4N force topology.
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Chiral 3N forces at N3LO can be grouped into

VN3LO
3N ¼ V2� þ V2��1� þ Vring þ V2��cont þ V1=m; (2)

where we take the long-range parts, the subleading two-
pion-exchange, the two-pion–one-pion-exchange, and the
pion-ring 3N forces, from Ref. [15], and the short-range
parts, the two-pion-exchange–contact and relativistic
1=m-corrections 3N forces from Ref. [16]. In Fig. 2, we
give the individual Hartree-Fock contributions to the neu-
tron matter energy. The evaluation is aided because parts of
the different 3N force topologies vanish for neutrons, and
the results have been checked by two independent calcu-
lations. The details of the calculation will be presented in a
future paper. At the Hartree-Fock level, the 3N=4N con-
tributions change by <5% if the cutoff is taken to infinity
(i.e., fR ¼ 1), but we will also include N2LO 3N forces
beyond Hartree-Fock. This requires a consistently used
regulator. Estimates of the theoretical uncertainty are pro-
vided by varying the 3N=4N cutoff.

The two-pion-exchange 3N forces at N3LO can be
largely written as shifts of the low-energy constants, �c1 ¼
�0:13 GeV�1 and �c3 ¼ 0:89 GeV�1 [15] of the N2LO
3N forces, plus a smaller contribution. The resulting en-
ergy of about �1:5 MeV per particle at saturation density
n0 in Fig. 2 is �1=3 of the N2LO 3N energy, as expected
based on the chiral EFT power counting. In contrast,
the two-pion–one-pion-exchange 3N force contributions,
which include 14 diagrams, are relatively large with
�3:6 MeV per particle at saturation density. Of similar,
but opposite size, are the pion-ring 3N force contributions,
with þ3:3 MeV per particle at n0. The shorter-range parts
of N3LO 3N forces depend on the momentum-independent
NN contacts, CT and CS, which we take consistently from
the N3LO EM or EGM potential used. The contributions
from the two-pion-exchange–contact 3N forces include 11
diagrams and depend only on CT . The resulting energy
ranges from�2:8 toþ1:3 MeV at n0 depending on the NN
potential used. These larger 3N results at N3LO are
consistent with contributions from the large ci constants
at N4LO exactly in these three topologies [18]. This
shows that higher-order many-body forces still need to be
investigated and that a chiral EFT with explicit � excita-
tions may be more efficient, since this would capture
these effects already at N3LO. Finally, the relativistic-
corrections 3N forces depend also on ��8 and ��9 [16] and
contribute at the few hundred keV level.

The 4N force contributions in Fig. 2 are an order of
magnitude smaller than those from the N3LO 3N forces
and of similar size as the 3N relativistic corrections. We
follow the 4N force notation Va through Vn of Ref. [17],
and include the direct and all 23 exchange terms. Because
of the spin-isospin structure, only three topologies contrib-
ute to neutron matter: the three-pion-exchange 4N forces
Va and Ve and the pion-pion-interaction 4N forces Vf. The
4N forces Vk and Vn involving the contact CT vanish in

neutron matter due to their spin structure. We find a total
4N force contribution of�174� 10 keV per particle at n0.
The Ve and Vf energies largely cancel [19], and their sum
agrees with the very small�� 20 keV per particle at n0 of
Ref. [20], which considered these two parts.
Since diagrams beyond Hartree-Fock involving NN

interactions and N2LO 3N forces (in particular with the
larger ci at N

3LO 3N and without RG evolution) provide
non-negligible contributions [2], we include all such dia-
grams to second order, as well as particle-particle diagrams
to third order, which is technically possible based on
Ref. [7]. In addition to using NN potentials with different
cutoffs and varying the 3N=4N cutoffs, we include esti-
mates of the theoretical uncertainties of the ci constants
and in the convergence of the many-body calculation.
The latter is probed by studying the sensitivity of the
energy to the single-particle spectrum used. We find that
the energy changes from second to third order, employing a
free or Hartree-Fock spectrum, by 0.8, 0.4, 1.3 MeV (1.4,
0.9, 2.7 MeV) per particle at n0=2 (n0) for the EGM
450=500, 450=700, EM 500 N3LO potentials, respectively.
The results, which include all these uncertainties, are dis-
played by the bands in Fig. 1. Understanding the cutoff
dependence and developing improved power counting
schemes remain important open problems in chiral EFT
[21]. For the neutron matter energy at n0, our first complete
N3LO calculation yields 14.1–21.0 MeV per particle. If we
were to omit the results based on the EM 500 N3LO
potential, as it converges slowest at n0, the range would
be 14.1–18.4 MeV.
As we find relatively large contributions from N3LO 3N

forces, it is important to study the EFT convergence from
N2LO to N3LO. This is shown in Fig. 3 for the EGM
potentials (N2LO is not available for EM), where the
N3LO results are found to overlap with the N2LO band
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FIG. 3 (color online). Neutron matter energy per particle as a
function of density at N2LO (upper blue band that extends to the
dashed line) andN3LO (lower red band). The bands are based on the
EGM NN potentials and include uncertainty estimates as in Fig. 1.
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across a �1:5 MeV range around 17 MeV at saturation
density. As expected from the net-attractive N3LO 3N
contributions in Fig. 2, the N3LO band yields lower ener-
gies. For the N2LO band, we have estimated the theoretical
uncertainties in the same way, and the neutron matter
energy ranges from 15:5 to 21:4MeV per particle at n0.
The theoretical uncertainty is reduced from N2LO to
N3LO to 14:1–18:4MeV, but not by a factor �1=3 based
on the power counting estimate. This reflects the large ci
3N contributions at N4LO, and is similar to the conver-
gence pattern observed in chiral NN potentials [1].

The neutron matter energy in Fig. 1 is in very good
agreement with NLO lattice results [3] and quantum
Monte Carlo simulations [22] at very low densities (see
also the inset) and approximately reproduces the scaling

�0:5
3k2F
10m , which we attribute to effective-range effects

combined with low cutoffs [9]. At nuclear densities,
we compare our N3LO results with variational calculations
based on phenomenological potentials [Akmal-
Pandharipande-Ravenhall (APR)] [23], which are within
the N3LO band, but do not provide theoretical uncertain-
ties. In addition, we compare the density dependence with
results from auxiliary field diffusion Monte Carlo calcu-
lations [Gandolfi-Carlson-Reddy (GCR)] [24] based on
nuclear force models adjusted to an energy difference of
32 MeV between neutron matter and the empirical satura-
tion point. The density dependence is similar to the N3LO
band, but the GCR results are higher below 0:05 fm�3.

The N3LO band provides key constraints for the nuclear
equation of state and for astrophysics. Figure 4 shows,
following Ref. [25], the allowed range for the symmetry

energy Sv and its density dependence L ¼ 3n0@nSvðn0Þ
(for details on the determination of Sv and L, see Ref. [8]).
Compared to the results from RG-evolved chiral interac-
tions with 3N forces at N2LO only [8], we find the same
correlation (with the same slope), but not as tight due to
the additional density dependences at N3LO. The N3LO
ranges for Sv and L are Sv ¼ 28:9–34:9MeV and
L ¼ 43:0–66:6MeV. The two neutron-matter bands in
Fig. 4 are complementary because the RG evolution in
Hebeler et al. [8] improves the many-body convergence,
while the band presented in this work is the first consistent
N3LO calculation. The predicted N3LO range as well as
that of Hebeler et al. [8] are in agreement with constraints
obtained from energy-density functionals for nuclear
masses [26] and from the 208Pb dipole polarizability [27].
In the future, the N3LO band can be narrowed further by a
higher-order many-body calculation with N3LO 3N forces
and by taking into account � excitations (explicitly or
through large ci contributions at N4LO [18]). Combined
with the heaviest 2M� neutron star [28] and a general
extension to high densities [8], our N3LO energy band
leads to a radius range of R ¼ 9:7–13:9 km for a typical
1:4M� neutron star, in remarkable agreement with Ref. [8].
For an alternative determination using in-medium chiral
perturbation theory for all densities, see Ref. [5].
We have presented the first complete N3LO calculation

of the neutron matter energy, including NN, 3N, and 4N
forces, with the first application of N3LO 3N forces to
many-body systems. The significant contributions from
N3LO 3N forces show that their inclusion will also be
very important for nuclear structure and reactions. Our
results provide constraints for the nuclear equation of
state and for neutron-rich matter in astrophysics, and
highlight the exciting role neutron matter and neutron-
rich systems play in chiral EFT, where all many-neutron
forces are predicted. The large contributions from N3LO
3N forces signal the importance of � contributions at
nuclear densities.
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J. Sarich, N. Schunck, M. Stoitsov, and S. Wild, Phys.
Rev. C 82, 024313 (2010).

[27] A. Tamii et al., Phys. Rev. Lett. 107, 062502 (2011).
[28] P. B. Demorest, T. Pennucci, S.M. Ransom, M. S. E.

Roberts, and J.W. T. Hessels, Nature (London) 467,
1081 (2010).

PRL 110, 032504 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

18 JANUARY 2013

032504-5

http://dx.doi.org/10.1016/S0375-9474(01)01231-3
http://dx.doi.org/10.1016/S0375-9474(01)01231-3
http://dx.doi.org/10.1016/j.ppnp.2011.12.034
http://dx.doi.org/10.1016/j.ppnp.2010.03.001
http://dx.doi.org/10.1016/j.ppnp.2010.03.001
http://dx.doi.org/10.1103/PhysRevC.83.031301
http://dx.doi.org/10.1103/PhysRevLett.105.161102
http://dx.doi.org/10.1103/PhysRevLett.105.161102
http://dx.doi.org/10.1103/PhysRevLett.95.160401
http://dx.doi.org/10.1103/PhysRevLett.95.160401
http://dx.doi.org/10.1016/j.nuclphysa.2005.08.024
http://dx.doi.org/10.1140/epja/i2003-10129-8
http://dx.doi.org/10.1140/epja/i2003-10129-8
http://dx.doi.org/10.1016/j.nuclphysa.2004.09.107
http://dx.doi.org/10.1103/PhysRevC.68.041001
http://dx.doi.org/10.1103/PhysRevC.68.041001
http://dx.doi.org/10.1016/j.physrep.2011.02.001
http://dx.doi.org/10.1103/PhysRevC.76.014006
http://dx.doi.org/10.1103/PhysRevC.76.014006
http://dx.doi.org/10.1103/PhysRevC.77.064004
http://dx.doi.org/10.1103/PhysRevC.84.054001
http://dx.doi.org/10.1016/j.physletb.2006.06.046
http://dx.doi.org/10.1103/PhysRevC.85.054006
http://dx.doi.org/10.1103/PhysRevC.85.054006
http://dx.doi.org/10.1016/0370-2693(80)90296-8
http://dx.doi.org/10.1016/j.nuclphysa.2012.01.003
http://dx.doi.org/10.1016/j.nuclphysa.2012.01.003
http://dx.doi.org/10.1103/PhysRevC.72.054006
http://dx.doi.org/10.1103/PhysRevC.72.054006
http://dx.doi.org/10.1103/PhysRevC.81.025803
http://dx.doi.org/10.1103/PhysRevC.58.1804
http://dx.doi.org/10.1103/PhysRevC.85.032801
http://dx.doi.org/10.1103/PhysRevC.85.032801
http://arXiv.org/abs/1203.4286
http://dx.doi.org/10.1103/PhysRevC.82.024313
http://dx.doi.org/10.1103/PhysRevC.82.024313
http://dx.doi.org/10.1103/PhysRevLett.107.062502
http://dx.doi.org/10.1038/nature09466
http://dx.doi.org/10.1038/nature09466

