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We explore the structure of multipartite quantum systems which are entangled in multiple degrees of

freedom. We find necessary and sufficient conditions for the characterization of tripartite systems and

necessary conditions for any number of parties. Furthermore we develop a framework of multilevel

witnesses for efficient discrimination and quantification of multidimensional entanglement that is

applicable for an arbitrary number of systems and dimensions.
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Entanglement plays a fundamental role in various fields
of research. In quantum information processing, this is
because it is heavily involved in quantum communication
protocols [1] and at the heart of one of the most likely
implementable models of a quantum computer [2]. But
also in condensed matter systems it has become clear
that there is a strong connection between phase transitions
in complex systems and entanglement [3].

The possible structure of correlations in large quantum
systems is, however, so undeniably complex that little
progress has been made on a general characterization of
multipartite entanglement (for a good overview consult,
e.g., Refs. [4–6]). Especially for systems that go beyond
two degrees of freedom (and thus cannot be represented by
qubits) little is known about the general structure of corre-
lations. In this Letter we explore the involvement of differ-
ent dimensions in multipartite entanglement. This is an
interesting question from the theoretical point of view as
this explains how many degrees of freedom (i.e., quantum
levels) need to be effectively entangled to prepare a state
and provides a measure of entanglement. Moreover, from a
more practical point of view, entanglement among more
than two levels allows us to achieve further and/or more
efficiently quantum information tasks [7], and recent
experiments are focusing on creating high dimensional
entanglement [8–14]. It is therefore desirable to put up
easily testable conditions that can assure that systems of a
certain entanglement dimensionality have been prepared
and that the experimental data cannot be reproduced by
entangling systems of lower dimensionality.

Whereas in the bipartite case a single number, the
Schmidt number [15], is sufficient to fully characterize
the dimensionality of a given quantum state, the situation
is more involved in the multipartite case as one needs to
take into account multiple such numbers to characterize the
state. To see this, consider pure states. In the bipartite case,
the Schmidt rank, which is the rank of the reduced state of
one particle (notice that they are both equal), answers the

question of how many dimensions are necessary to faith-
fully represent the state and its correlations in any local
basis. However, in a tripartite system there are three one-
party reduced states that can essentially be of different rank
and thus the question of how many degrees of freedom are
involved has at least three answers. Determining which
configurations of local ranks are possible can be regarded
as a particular instance of the quantum marginal problem
[16], where it has been shown that local parameters provide
information on global entanglement properties [17].
Investigations on generalizations of the Schmidt rank are
also interesting in the context of quantum computation.
Although it has been shown that certain implementations
of well-known algorithms require (multipartite) entangle-
ment [18], universal quantum computation is possible with
little entanglement with respect to most bipartite measures
[19]. Interestingly, the Schmidt rank is an exception, being
actually necessary for a quantum speedup [19,20].
Recent papers [21] have studied multipartite entangle-

ment dimensionality under the assumption that all local
ranks are equal, leading to a situation analogous to the
bipartite case in which a single figure of merit is enough.
We study in full detail for the first time the general case in this
Letter, which is organized as follows. First, we present the
natural generalization for the Schmidt rank and number for
multipartite systems: the Schmidt rank and number vector.
Then we show and illustrate how one can fully characterize
the state space of tripartite quantum systems. Althoughmore
involved than in the bipartite case, it turns out that there is an
underlying structure in the sets of states of different entan-
glement dimensionality. This allows us to introduce a gen-
eral construction method for multilevel nonlinear witnesses
that can efficiently discriminate and quantify the entangle-
ment dimensionality in arbitrary multipartite states.
Let us start by quickly reviewing the case of bipartite

states composed of two subsystems A and B. Let c be a
pure bipartite state and let �A and �B be its corres-
ponding reductions. The Schmidt rank of c is defined as
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dc :¼ rankð�AÞ ¼ rankð�BÞ. Since dc is the minimal num-

ber of terms one needs to write the state in a biorthogonal
product basis (i.e., Schmidt decomposition), this number
clearly gives theminimal local dimensions for subsystemsA
andB. Thus, c is effectively a two-qudit state. The general-
ization tomixed states� is givenby theSchmidt number [15]

d� ¼ min
Dð�Þ

max
fc ig

dc i
; (1)

where theminimization is over all ensemble decompositions
of �,Dð�Þ ¼ fpi; jc ii: � ¼ P

ipijc iihc ijg. This is a very
natural definition as this means that � cannot be obtained by
mixing pure states of a Schmidt rank lower than d� and that

there exists away to prepare the state bymixing states with a
Schmidt rank at most d�. Moreover, the Schmidt number is

an entanglement monotone and can thus be used to quantify
the degree of entanglement [15] and, also, it can be opera-
tionally interpreted as the zero-error entanglement cost in the
protocol of one-shot entanglement dilution [22]. Notice that
although in general the computation of the Schmidt number
is involved, there exist ways to obtain lower bounds for this
measure. In particular, one can define the set of states with
the Schmidt number at most d, Sd, which induces a Russian
doll structure of convex sets (i.e., Sd � Sdþ1) and Schmidt
number witnesses can be defined [23].

Let us now move to the multipartite case. For the sake of
readability we will discuss the tripartite case in detail, as
the generalization to even higher numbers of parties fol-
lows in a straightforward way. A tripartite pure state has
three single-particle marginals of inequivalent rank (which
we will from now on abbreviate via rankð�MÞ :¼ rM); i.e.,
for jc i 2 H A �H B �H C we can look at reduced
states �i :¼ Tr�iðjc ihc jÞ. Three out of the six possible
reductions are sufficient as of course rA ¼ rBC, rB ¼ rAC,
and rC ¼ rAB hold. Thus in order to characterize tripartite
states three numbers are enough, i.e., (rA, rB, rC). Although
these three ranks can potentially be different not every
combination of integers can actually be achieved by a
physical quantum state. One can show that the subadditiv-
ity of the Rényi 0-entropy, which translates as the sub-
multiplicativity of the ranks is actually a necessary and
sufficient constraint on the three numbers; i.e., let without
loss of generality rA � rB, rC be fulfilled, then for every set
of numbers fulfilling rA � rBrC there exists a pure state
realizing exactly this combination [24]. For a higher num-
ber of parties this is not sufficient anymore [25], which
could be solved via introducing the following conjecture
for tripartite reductions of four-partite pure states
rABrACrBC � rArBrC [26]. Focusing again on tripartite
systems we arrange rA, rB, and rC in nonincreasing order
to form the vector (r1, r2, r3). Given a pure state jc i, its
entanglement dimensionality vector (or Schmidt rank vec-

tor) is defined as dc :¼ ðrc1 ; rc2 ; rc3 Þ. The extension of this

definition to mixed states is not completely straightforward
because, contrary to the bipartite case, if one considers

states of entanglement dimensionality r1 or less, r2 or less,
and r3 or less, this just defines a partial ordering and, as a
consequence, one cannot trivially obtain a structure of sets
in which, given any two subsets, one is always embedded
in the other. This can be seen by considering the example
of a state with the Schmidt vector (4, 2, 2) and a state of the
Schmidt vector (3, 3, 2). In order to resolve this ambiguity,
to obtain a well-defined mathematical structure and to
impose a physically meaningful classification we propose
the following definition for entanglement dimensionality
vectors (or Schmidt number vectors) for mixed states: a
state � has the Schmidt number vector d� ¼ ðr1; r2; r3Þ iff

rj ¼ min
Dð�Þ

max
fc ig

rc i

j : (2)

That is, for all ensemble decompositions of �, Dð�Þ ¼
fpi; jc ii: � ¼ P

ipijc iihc ijg, there exists a jc ii with rc i

j

at least rj and there exists a particular ensemble decom-

position in which all jc ii satisfy rc i

j � rj 8i.

The structure of sets of states induced by this definition
is depicted in Fig. 1, where in a slight abuse of notation we
denote by (r1, r2, r3) the set of all states with the Schmidt
number vector with entries at most r1, at most r2, and at
most r3. Some comments are in order. First, notice that
each entry rj of the Schmidt number vector is an entangle-

ment monotone. This is straightforward as the local rank of
each jc ii in an ensemble decomposition of � cannot be
increased by LOCC [27]. However, this is just a partial
order as there exist incomparable states according to this
measure, e.g., those in the subsets (r1, r2, r3) and (r

0
1, r

0
2, r

0
3)

when r1 > r01 but r2 < r02, which is very natural since the
states in these subsets are LOCC incomparable. This is
reflected in the structure of the set of states by the fact that
there are subsets in which neither is included in the other as
in the case of (4, 2, 2) and (3, 3, 2) as schematically shown
in Fig. 1. Second, it should be noticed that d� ¼ ðr1; r2; r3Þ
does not imply that � has an optimal ensemble decom-
position with one jc ii such that dc i

¼ ðr1; r2; r3Þ but

rather that the state cannot be written solely as a mixture
of states which are all contained in a set which is lower in
the hierarchy induced by the Schmidt number vector to (r1,
r2, r3). Consider for instance the qudit (d ¼ 7) state � ¼
pjc 332ihc 332j þ ð1� pÞjc 422ihc 422j with 0< p< 1 and

FIG. 1. Schematic representation of a few sets of states with a
given Schmidt number vector.
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jc 332i ¼ 1ffiffiffi
3

p ðj000i þ j111i þ j122iÞ;

jc 422i ¼ 1

2
ðj333i þ j344i þ j435i þ j446iÞ: (3)

This decomposition is clearly optimal as jc 332ihc 332j
and jc 422ihc 422j are supported on orthogonal subspaces.
Therefore, d� ¼ ð4; 3; 2Þ although it is a mixture of (3, 3, 2)

and (4, 2, 2) states and does not contain any (4, 3, 2) state in
its support. However, this convention turns out to be very
natural from the physical point of view when interpreting
the Schmidt number vector as an indication of the number
of levels one has to be able to effectively entangle to
prepare the state. Despite it being not necessary to mix
(4, 3, 2) pure states to prepare �, this state cannot be
obtained in an experiment without the ability to effectively
access four quantum levels for one subsystem, three for
another, and two for the remaining one [28]. Third and last,
one cannot exclude the possibility of a state that admits two
different ensemble decompositions, each of which with
states in incomparable subsets like (3, 3, 2) and (4, 2, 2).
According to our definition such a state would have entan-
glement dimensionality (3, 2, 2). This is again physically
reasonable taking into account the entanglement monoto-
nicity of each rj. Moreover, this quantifies the least number

of levels one must be able to effectively entangle.
We consider now how to derive conditions to discrimi-

nate the entanglement dimensionality of a given mixed
state of N parties. Notice that, contrary to the bipartite
case, although Schmidt number vector witnesses can be
defined, a single one of them cannot fully identify certain
states due to the lack of a Russian doll structure of convex
sets. This can be seen by considering the states in (4, 3, 2)
which lie in the convex hull of (3, 3, 2) and (4, 2, 2). This
problem can be overcome in principle by considering
several entanglement witnesses or by defining nonlinear
witnesses. We will follow this second approach by intro-
ducing the measures

Ek :¼ inf
Dð�Þ

X
i

piSkðc iÞ ðk ¼ 1; 2; . . . ; NÞ: (4)

Here, Skðc Þ are the entries arranged in nonincreasing order
of the entropy vector given by the entropies of the single-
particle reduced density matrices. For the sake of mathe-
matical convenience we use the linear entropy, i.e.,

Sð�AÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½1� Trð�2

AÞ�
q

. We will denote by �s1 ; . . . ; �sN

the different single-party reduced density matrices in such
a way that Skðc Þ ¼ Sð�skÞ. The last component of this

vector is equivalent to a measure of genuine multipartite
entanglement that has been introduced in Ref. [29] and

intensively studied in Ref. [30]. Notice that if Ek >ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� 1=rÞp

, this implies that rk � rþ 1; i.e., we can
lower bound rk � d 2

2�E2
k

e. Therefore, although the converse

is not true, these measures can be used to obtain lower
bounds for the Schmidt number vector, thus allowing the
possibility of inferring that at least a certain entanglement
dimensionality has been achieved. Actually, the measures
Ek are hard to compute in practice [31]; however, for
simple measures and bipartite systems there exist tech-
niques to estimate certain measures of entanglement using
experimentally friendly witness techniques [32,33]. In the
following we derive a general framework that allows for
the construction of nonlinear witnesses that are experimen-
tally feasible and able to lower bound each Ek and thus
reveal even the nonconvex structures of multipartite and
multidimensional entanglement. In order to do that, let us
first consider pure states, which we expand in the computa-
tional basis, jc i ¼ P

�c�j�i, with � a multi-index of

N entries taking the values 0 and d� 1. It can be seen
that Sð�skÞ2 ¼

P
�;�0 jc�c�0 � c�sk

c�s0
k

j2, where the pair

(c�sk
, c�s0

k

) is just equal to the pair (c�, c�0), but with all

components of � and �0 that are part of the reduction sk
exchanged. Using that jCjPi2Cjaij2 � jPi2Caij2 [30] and
that ja� bj � jaj � jbj, we have that

Sð�skÞ �
1ffiffiffiffiffiffiffiffiffijCkj

p X
�;�02Ck

ðjc�c�0 j � jc�sk
c�s0

k

jÞ (5)

for any subset Ck of binary multi-indices of N entries.
Therefore, we can bound our measures Ek for pure states as

Ekðc Þ � 1ffiffiffiffiffiffi
Ck

p X
�;�02Ck

�
jc�c�0 j �min

fsmg
Xk
m¼1

jc�sm
c�0

sm
j
�
: (6)

Now we can extend this to mixed states via the observation
that infðA� BÞ � infA� supB. First, it is clear that

inf
Dð�Þ

X
i

pijci�ci�0 j � jX
i

pic
i
�c

i
�0 �j ¼ jh�j�j�0ij: (7)

For the supremum we can use

sup
Dð�Þ

X
i

pimin
fsmg

Xk
m¼1

jci�sm
ci�0

sm
j � min

fsmg
sup
Dð�Þ

X
i

pi

Xk
m¼1

jci�sm
ci�0

sm
j � min

fsmg
Xk
m¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�X
i

pijci�sm
j2
��X

i

pijci�0
sm
j2
�s

¼ min
fsmg

Xk
m¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�sm j�j�smih�0

sm j�j�0
smi

q
: (8)
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In conclusion, we end up with Ekð�Þ � Wkð�Þ, where
Wkð�Þ :¼ 1ffiffiffiffiffiffiffiffiffijCkj

p X
�;�02Ck

�
jh�j�j�0ij

�min
fsmg

Xk
m¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�sm j�j�smih�0

sm j�j�0
smi

q �
: (9)

Thus, we obtain easily computable lower bounds on the
Schmidt number vector in terms of the entries of the
density matrix. Notice that we are free to play with
the subsets Ck of entries to be considered to obtain the
most stringent bounds. Also, the conditions are basis de-
pendent and one can furthermore optimize over all possible
choices of local bases.

It is crucial to investigate how these lower bound non-
linear witness vectors enable a dimensionality classifica-
tion in the presence of noise. Typically one encounters
either white noise or dephasing in experimental situations.
So let us consider the following state:

�test ¼ p�ð4;3;2Þ þ q�dp þ 1� p� q

64
1; (10)

where �432 ¼ jc 432ihc 432j is our multidimensionally mul-
tipartite entangled target state

jc 432i ¼ 1

2
ðj000i þ j111i þ j012i þ j123iÞ; (11)

and�dp is the completely dephased state. The crucial step in

using the nonlinear witness element as a lower bound on the
entropy, and thus the dimensionality, is of course the selec-
tion of the sets ð�;�0Þ 2 Ck. We now use a different choice
for each entry of thewitness vector in order to achieve good
noise resistance. For the first component we choose C1 ¼
fð000; 111Þ; ð000; 123Þ; ð012; 123Þg, for the second we
choose C2¼fð000;111Þ;ð000;123Þ;ð012;123Þ;ð000;012Þ;
ð111;123Þg, and for the maximum entropy we can use the
full set C3¼fð000;111Þ;ð000;123Þ;ð012;123Þ;ð000;012Þ;
ð111;123Þ;ð111;012Þg. Then using Eq. (9) we arrive at an
analytical expression for the entropy lower bounds which
we plot in Fig. 2.

What is also clearly visible in the example is the fact that
using the linear entropy lower bounds to determine the
dimensionality of course works best if the distribution of
the eigenvalues of the marginals is rather flat. Although
this might present itself as a weakness if one aims to
characterize fully the dimensionality of mixed states on a
theoretical level, we would like to argue that this method
actually is advantageous for all practical purposes. First we
want to point out that just as in the bipartite case there exist
a lot of full rank, indeed even arbitrary dimensionality,
states that are �-close to the separable states, so even if
such a state were to be detected by a more precise criterion,
it would immediately introduce problems with experimen-
tal precision that would make a meaningful distinction
impossible. Secondly the entanglement entropy is at the
heart of the advantage of higher dimensional systems; e.g.,

it directly determines the size of the generated key in a
bipartite quantum key distribution scenario (see, e.g.,
Refs. [7,34]). Using our lower bounds one can achieve
two things: first, give a reliable detection method for the
dimensionality of multipartite systems, and at the same
time answer how useful these extra dimensions are in terms
of potential applications.
In conclusion we have presented for the first time a

general classification of multipartite entanglement in terms
of multidimensional entanglement. We give necessary and
sufficient conditions for the existence of tripartite entan-
glement classes and necessary conditions for any number
of parties and with this illustrate the structure of multi-
partite and multidimensional entanglement and the partial
hierarchy of subsets of states it induces. Furthermore we
develop a framework of entropy-vector lower bounds that
employs nonlinear witness techniques. We explicitly show
that these techniques work very well in exeprimentally
feasible and plausible scenarios.
We believe that this not only presents testable conditions

about general quantum correlations that are the heart of
quantum physics, but also may directly serve as security
tests in multidimensional applications of entanglement in
quantum key distribution systems.
Open challenges include the characterization of n-qudit

state spaces and the relation of multidimensionality of
entanglement with its distillability (maybe as an extension
of the conjecture in Ref. [23]).
M.H. would like to acknowledge productive discus-

sions and valuable input from Dagmar Bruß, Ottfried
Gühne, Hermann Kampermann, Milan Mosonyi, Marcin
Pawlowski, Marco Piani, Andreas Winter, and Junyi Wu

FIG. 2 (color online). Here we depict the noise resistance of
our detection method in the presence of white and dephasing
noise for the exemplary state from Eq. (10). In the top left corner
the state is pure; going down vertically adds white noise and
going diagonally to the right dephases the state. The differently
colored (shaded) regions are labeled with the corresponding
lower bounds on the dimensionalities that one can prove using
the nonlinear witness from Eq. (9).
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