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Based on a microscopic theoretical study, we show that novel superconductivity is induced by carrier

doping in layered perovskite Ir oxides where a strong spin-orbit coupling causes an effective total angular

momentum Jeff ¼ 1=2Mott insulator. Using a variational Monte Carlo method, we find an unconventional

superconducting state in the ground state phase diagram of a t2g three-orbital Hubbard model on the

square lattice. This superconducting state is characterized by a dx2-y2 -wave ‘‘pseudospin singlet’’ formed

by the Jeff ¼ 1=2 Kramers doublet, which thus contains interorbital as well as both singlet and triplet

components of t2g electrons. The superconducting state is found stable only by electron doping, but not by

hole doping, for the case of carrier doped Sr2IrO4. We also study an effective single-orbital Hubbard

model to discuss the similarities to high-Tc cuprate superconductors and the multiorbital effects.
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The search for novel superconductivity (SC) is one of
the most interesting and fundamental issues in condensed
matter physics. In strongly correlated electron systems, SC
is very often induced in the vicinity of long-range ordered
states, thus suggesting the importance of the enhanced
fluctuations for the SC. The most studied example is found
in high-Tc cuprate superconductors [1] where the SC
occurs next to an antiferromagnetic (AFM) Mott insulator,
and thus the AFM spin fluctuations are often believed to be
responsible for the SC [2].

Recently, layered perovskite 5d transition metal oxides
Sr2IrO4 [3,4] and Ba2IrO4 [5] have attracted much atten-
tion because several experiments have revealed a novel
spin-orbit-induced Jeff ¼ 1=2 Mott insulating behavior at
low temperatures [6–12]. In these systems, due to a large
spin-orbit coupling (SOC) and a large crystal field split-
ting, the local electronic state with nominally ðt2gÞ5 elec-

tron configuration in Ir ion is represented by an effective
total angular momentum Jeff ¼ j�Lþ Sj ¼ 1=2 [13]. In
these insulators with effectively one hole per Ir ion, this
pseudospin remains a good quantum number and orders
antiferromagnetically. Indeed, very recent experiments in
Sr2IrO4 have observed that the low-energy magnetic exci-
tations can be well described by a pseudospin 1=2 AFM
Heisenberg model with AFM exchange coupling Jex ¼
60–100 meV [10,12]. The theoretical studies also support
this Jeff ¼ 1=2 Mott insulator in these Ir oxides [14–18].

It is now interesting to compare Sr2IrO4 with parent
compunds of high-Tc cuprate superconductors such as
La2CuO4. The similarities are summarized as follows:
(i) both are in the same layered perovskite structure of
K2NiF4 type, i.e., in a quasi-two-dimensional (2D) struc-
ture, (ii) both have effectively one hole per Ir or Cu ion,
(iii) both show spin or pseudospin 1=2 AFM order at low

temperatures with low-energy magnetic excitations
described by a spin or pseudospin 1=2 AFM Heisenberg
model, and (iv) both have the large Jex of the same order.
Considering these similarities, it is tempting to expect that
novel unconventional SC with possibly a high critical
temperature (Tc) is induced once mobile carriers are intro-
duced into the Jeff ¼ 1=2 Mott insulating Sr2IrO4.
Although there have been several reports suggesting this
possibility [10,19], it is highly desirable to show, based on
microscopic calculations, the existence of SC in the doped
Jeff ¼ 1=2 Mott insulator.
In this Letter, using a variational Monte Carlo (VMC)

method, we study the ground state phase diagram of a t2g
three-orbital Hubbard model and show that novel uncon-
ventional SC is induced by carrier doping in the Jeff ¼ 1=2
Mott insulator. This SC is characterized by a dx2-y2-wave

‘‘pseudospin singlet’’ formed by the Jeff ¼ 1=2 Kramers
doublet, which thus consists of interorbital pairings and
both singlet and triplet pairings of t2g electrons. We also

find that the SC is stable only by electron doping, but not
by hole doping, for the case of carrier doped Sr2IrO4. We
furthermore study an effective single-orbital Hubbard
model to discuss the similarities to high-Tc cuprates and
the multiorbital effects.
One of the simplest models for the Ir oxides, which we

shall study here, is a t2g three-orbital Hubbard model on the

square lattice defined by H ¼ Hkin þHSO þHI, where

Hkin ¼
P

k;�;�"�ðkÞcyk��ck�� is the kinetic term, HSO ¼
�
P

iLi � Si is the SOC term with a coupling constant

�, andHI¼U
P

i;�ni�"ni�# þ
P

i;�<�;�½U0ni��ni� ��þðU0 �
JÞni��ni���þJ

P
i;�<�ðcyi�"cyi�#ci�#ci�" þcyi�"c

y
i�#ci�#ci�" þ

H:c:Þ is the Coulomb interaction term including intraorbital
(U), interorbital (U0), and spin-flip and pair-hopping (J)
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interactions [16]. Here, cyi�� is an electron creation
operator at site i with spin �ð¼"; #Þ and orbital

�ð¼ yz; zx; xyÞ, ni�� ¼ cyi��ci��, and cyk�� is the

Fourier transform of cyi��. We impose U ¼ U0 þ 2J for
rotational symmetry [20].

The kinetic and the SOC terms can be combined,
H0ðti; �xy; �Þ ¼ Hkin þHSO, in the matrix form

H0¼
X
k;�

ðcykyz�;cykzx�;cykxy ��Þ

�
"yzðkÞ is��=2 �s��=2

�is��=2 "zxðkÞ i�=2

�s��=2 �i�=2 "xyðkÞ

0
BB@

1
CCA

ckyz�

ckzx�

ckxy ��

0
BB@

1
CCA

¼ X
k;m;s

EmðkÞaykmsakms; (1)

where �� is the opposite spin of � and s� ¼ 1ð�1Þ for � ¼
" ð#Þ. Notice that the SOCmixes the different electron spins
(� and ��), and the new quasiparticles, obtained by diago-
nalizing H0, are characterized by band index mð¼ 1; 2; 3Þ
and pseudospin s ¼ ð"; #Þ with a creation operator aykms. In

the atomic limit with "yzðkÞ ¼ "zxðkÞ ¼ "xyðkÞ ¼ 0, the

sixfold degenerate t2g levels are split into twofold degen-

erate Jeff ¼ 1=2 states (m ¼ 1) and fourfold degenerate
Jeff ¼ 3=2 states (m ¼ 2, 3) [13]. The undoped filling
corresponds to electron density n ¼ 5, and in the atomic
limit all states but the Jeff ¼ 1=2 states are fully occupied.

In Ref. [16], we have constructed the noninteracting
tight-binding energy band for Sr2IrO4: "yzðkÞ ¼
�2t5 coskx � 2t4 cosky, "zxðkÞ ¼ �2t4 coskx � 2t5 cosky,

and "xyðkÞ¼�2t1ðcoskxþcoskyÞ�4t2 coskxcosky�2t3�
ðcos2kxþcos2kyÞþ�xy with a set of tight-binding

parameters ðt1; t2; t3; t4; t5;�xy;�Þ ¼ ð0:36;0:18;0:09;0:37;
0:06;�0:36;0:50Þ eV. The corresponding Fermi surface
and energy dispersions are shown in Fig. 1. As shown in
Fig. 1(b), we assign the band index m ¼ 1, 2, and 3 from
the highest band to the lowest one, and only band 1 crosses
the Fermi energy [21,22].

The effect of Coulomb interactions is treated using a
VMC method [16]. The trial wave function j�i considered
here is composed of three parts: j�i ¼ PJcP

ð3Þ
G j�i. j�i is

the one-body part obtained by diagonalizing ~H0 ¼
H0ð~ti; ~�xy; ~���Þ with variational ‘‘renormalized’’ tight-

binding parameters f~ti; ~�xy; ~���g. Notice that we introduce
an orbital dependent ‘‘effective’’ SOC constant: � ! ~���.

To treat magnetically ordered states, a term with a different
magnetic order parameter is added to ~H0. Here, we con-
sider out-of-plane AFM order (along the z axis, z-AFM)
and in-plane AFM order (along x axis, x-AFM), described,

respectively, by
P

i;mM
z
me

iQ�riðayim"aim" � ayim#aim#Þ andP
i;mM

x
me

iQ�riðayim"aim# þ ayim#aim"Þ, where ayims is the

Fourier transform of aykms and Q ¼ ð�;�Þ. The order

parameters (Mz
1, M

z
2, M

z
3) for z-AFM and (Mx

1, M
x
2, M

x
3)

for x-AFM are variational parameters. With an appropriate
basis transformation, we obtain the original t2g orbital

representation in real space and construct the Slater deter-
minant j�i for VMC simulation.
To study a possible superconducting state, we consider

the following BCS-type Hamiltonian,

~HBCS ¼
X
k

ðayk1";ayk2";ayk3";a�k1#;a�k2#;a�k3#Þ

�

�1 0 0 �11 �12 �13
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32 0 ��2 0

��
13 ��

23 ��
33 0 0 ��3

0
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ak3"
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0
BBBBBBBBBBBBB@

1
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;

(2)

where �m ¼ ~EmðkÞ � ~�, ~EmðkÞ is the eigenvalues of ~H0,
and ~� is a variational parameter of the chemical potential
form. The gap functions �mm0 (k dependence implicitly
assumed) are additional variational parameters. After di-
agonalizing ~HBCS, the ground state of the superconducting

state is obtained by creating all negative energy states ( ��y
	)

and annihilating all positive energy states (�	) on the

vacuum state, j�i ¼ Q
	�	 ��

y
	 j0i. In this study, we con-

sider mostly the intraband (but interorbital) pairing,
namely, �mm0 ¼ 0 for m � m0 [23].
The operator Pð3Þ

G is a Gutzwiller factor extended for the

three-orbital system and the operator PJc is a long-rang

charge Jastrow factor. These operators are exactly the same
ones reported in Ref. [16]. The ground state energies
are calculated with a VMC method. The variational pa-
rameters, as many as 80 parameters for a 20� 20 square
lattice, are simultaneously optimized to minimize the var-
iational energy by using the stochastic reconfiguration
method [24].

FIG. 1. (a) Fermi surface and (b) energy dispersions of the
noninteracting tight-binding energy band for Sr2IrO4 with elec-
tron density n ¼ 5. Numbers in (b) denote the band indexm, and
EF is the Fermi energy. A set of tight-binding parameters used is
ðt2; t3; t4; t5; �xy; �Þ ¼ ð0:5; 0:25; 1:03; 0:17;�1:0; 1:39Þt1.
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Let us first summarize in Fig. 2 our main results for the
ground state phase diagram where the electron density n
and the intraorbital Coulomb interaction U are varied. In
this phase diagram, we set the Hund’s coupling J ¼ 0.
Therefore, the pseudospin rotational symmetry is pre-
served [14,16], and z-AFM and x-AFM are energetically
degenerate (denoted simply by AFM-I or AFM-M in the
phase diagram). At n ¼ 5, the AFM insulator appears for
U=t1 * 2:6. This insulating state is considered to be the
spin-orbit-induced Jeff ¼ 1=2 Mott insulator observed in
Sr2IrO4 [16]. With increasing n by electron doping, the
AFM order is eventually destroyed, and it is replaced by
the superconducting state for U=t1 * 6 and n� 5:2
(namely, �20% electron doping). The Cooper pair sym-
metry of this SC is found to be a dx2-y2-wave ‘‘pseudospin

singlet’’ formed by the Jeff ¼ 1=2 Kramers doublet [25].
Thus, this pairing contains interorbital components as well
as both singlet and triplet components of t2g electrons. This

can be easily seen in the limit of large SOC (� ! 1),
where the most dominant Cooper pair is expressed by

ayk1"a
y
�k1# /ðcykxy"þcykyz#þicykzx#Þðcy�kxy#�cy�kyz"þicy�kzx"Þ.

When � is finite, the coefficient of each term is different
from the one in the above limit and it is determined varia-
tionally. It should also be noted that the superconducting
order parameters considered in Eq. (2) include not only the
nearest-neighbor pairing but also long-range pairings, e.g.,
up to the 5th neighbor for the dx2-y2-wave symmetry [26].

It is known that the simplest dx2-y2-wave pairing (coskx �
cosky) is significantly modified by the long-range contri-

bution in the underdoped regime of high-Tc cuprates [27].
The long-range pairings are also important in our three-
orbital model and give the lower variational energy for the
superconducting state.

To the contrary, with decreasing electron density by hole
doping for n < 5, we do not find a superconducting state in
the phase diagram (not shown here), where instead a AFM
metal dominates the SC [28]. This electron-hole asymme-
try of the phase diagram reminds us of the phase diagram

of a model for high-Tc cuprates. As in the case of high-Tc

cuprates, the asymmetry found here for the three-orbital
Hubbard model is understood due to a band structure
effect. As seen in Fig. 1(b) (indicated by the dotted circle),
the dispersion of band m ¼ 1 is flat for k around (� �, 0)
and (0, ��), which induces van Hove singularity in the
density of states (DOS) for n > 5 (but not for n < 5).
The large DOS originated from this flat dispersion favors
the SC [29].
Next, we study the effect of Hund’s coupling J. Figure 3

shows the ground state phase diagram in a n-J=U plane for
U=t1 ¼ 8. The introduction of a finite J breaks the pseu-
dospin rotational symmetry [14,16], and the states with in-
plane AFM order are favored over those with out-of-plane
AFM order (see Fig. 3). We also find in Fig. 3 that the
superconducting state remains stable, but the supercon-
ducting region gradually reduces and eventually disappears
with further increasing J=U. This implies that the Hund’s
coupling J unfavors the SC. To understand the effect of
Hund’s coupling J, we recall that the charge gap �c in the
limit of strong Coulomb interactions with d5 configuration
is �c ¼ Eðd4Þ þ Eðd6Þ � 2Eðd5Þ ¼ U� 3J [30]. Thus,
the effect of the Hund’s coupling J is to reduce the effec-
tive electron correlations. Comparing the variational ener-
gies of the paramagnetic metal and the superconducting
state, we find that the SC is stabilized by the gain of the
interaction energies at the expense of the band energies.
Therefore, with increasing the Hund’s coupling J, the
condensation energy of the SC is greatly reduced and the
SC is eventually destabilized [31]. We also study the J=U
dependence of the SC for U=t1 ¼ 10, and the results are
shown in Fig. 3. Although the Hund’s coupling J is still
destructive for the SC, the superconducting region is found
to be rather extended as compared with the results for
U=t1 ¼ 8. This suggests that the SC is more likely to
be found experimentally in the doped Ir oxides with
larger U=t1.

AFM-I

AFM-M

PM-M

FIG. 2 (color online). The ground state phase diagram of the
three-orbital Hubbard model on the 2D 20� 20 square lattice
with J ¼ 0. PM-M, AFM-I, AFM-M, and SC denote para-
magnetic metal, AFM insulator, AFM metal, and dx2-y2 -wave

‘‘pseudospin singlet’’ SC, respectively.

x-AFM-I PM-M

x-AFM-M

FIG. 3 (color online). The ground state phase diagram of the
three-orbital Hubbard model on the 2D 20� 20 square lattice.
The solid red and dotted blue lines represent the phase bounda-
ries for U=t1 ¼ 8 and 10, respectively. PM-M, x-AFM-I,
x-AFM-M, and SC denote paramagnetic metal, in-plane AFM
insulator, in-plane AFM metal, and dx2-y2 -wave ‘‘pseudospin

singlet’’ SC, respectively.
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It should be noted here that the realistic values of the
Coulomb interactions for the Ir oxides are still controver-
sial, and that even these values may vary greatly for differ-
ent models because the screening mechanisms can be
different [32]. Nevertheless, the previous studies
[17,33,34] have reported that U ¼ 2–3 eV (i.e., U=t1 ¼
5:6–8:3) and J=U ¼ 0:05–0:20, which are still within (or at
least in the vicinity of) the parameter region where we find
the SC induced by electron doping.

Finally, let us study an effective single-orbital
Hubbard model [15,19] to discuss the similarities to
high-Tc cuprates and the multiorbital effects. The effective
single-orbital model is readily constructed by fitting
band m ¼ 1, i.e., ‘‘Jeff ¼ 1=2 band,’’ in Fig. 1(b)
using the dispersion relation "ðkÞ¼�2tðcoskxþcoskyÞ�
4t0coskxcosky�2t00 �ðcos2kxþcos2kyÞ with ðt;t0;t00Þ¼
ð0:221;0:057;�0:011Þ eV. The value of U=t for the effec-
tive single-orbital Hubbard model is chosen to be 13
(� 8t1=t), which should correspond to U=t1 ¼ 8 for the
three-orbital Hubbard model.

The ground state phase diagram of this effective single-
orbital Hubbard model is studied using the VMC method.
The trial wave function used is almost the same as the one

for the three-orbital model: j�i ¼ PJcP
ð1Þ
G j�i. The opera-

tor Pð1Þ
G ¼ Q

i½1� ð1� gÞni"ni#� is a usual Gutzwiller fac-
tor with only one variational parameter g. For the one-body
part j�i, we consider the BCS-type wave function with
both AFM and dx2-y2-wave superconducting orders [35].

Figure 4 shows the doping dependence of the variational
energies for different states in the single-orbital Hubbard
model. At half filling (n ¼ 1), the ground state is an AFM
insulator. By electron doping with n > 1, the AFM order
vanishes around 12% doping and the dx2-y2-wave SC

appears. To the contrary, the SC is absent in the hole-doped
side (n < 1). This phase diagram is very similar to the one

of the three-orbital Hubbard model and also to the one of a
model for high-Tc cuprates [36], suggesting that the
mechanisms of SC are the same origin for both systems.
It should be noted that the electron-hole asymmetry found
in a model for high-Tc cuprates, where the hole doping
favors the SC more than the electron doping, is opposite to
the results obtained here (see Fig. 4). This difference is
simply because of the sign difference of t0=t between the
effective single-orbital model (t0=t > 0) and a model for
high-Tc cuprates (t

0=t < 0) [37].
Although they are qualitatively similar, the phase dia-

grams for the three-orbital and the effective single-orbital
Hubbard models are quantitatively different. For instance,
the region of the SC in the single-orbital model seems
larger than that in the three-orbital model (Fig. 4 should
be compared with Fig. 2 atU=t1 ¼ 8). This indicates that a
multiorbital effect is to destruct the SC. The reason can be
attributed to the reduction of the effective electron corre-
lations due to large orbital fluctuations, which certainly
decrease the probability of facing double occupancy at the
same orbital. As mentioned above, the reduction of the
effective electron correlations destabilizes the SC and its
region becomes smaller.
In summary, we have studied the ground state phase

diagram of the three-orbital Hubbard model for Sr2IrO4.
We have found the unconventional SC induced by carrier
doping in the Jeff ¼ 1=2 Mott insulator. This SC is char-
acterized by the dx2-y2-wave ‘‘pseudospin singlet’’ formed

by the Jeff ¼ 1=2 Kramers doublet. We have shown that
the SC is induced only by electron doping, but not by hole
doping, for the case of carrier doped Sr2IrO4. By studying
the effective single-orbital Hubbard model constructed
from the Jeff ¼ 1=2 band, we have found the similar phase
diagram to the one of a model for high-Tc cuprates, sug-
gesting the same mechanism of the SC in both systems.
Finally, it should be noted that SC has not been observed
yet experimentally in layered perovskite Ir oxides. We
hope that our study will stimulate further experimental as
well as theoretical studies in this direction.
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