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We study quantum-well-confined holes based on the Luttinger-model description for the valence band

of typical semiconductor materials. Even when only the lowest quasi-two-dimensional (quasi-2D)

subband is populated, the static spin susceptibility turns out to be very different from the universal

isotropic Lindhard-function line shape obtained for 2D conduction-electron systems. The strongly

anisotropic and peculiarly density-dependent spin-related response of 2D holes at long wavelengths

should make it possible to switch between easy-axis and easy-plane magnetization in dilute magnetic

quantum wells. An effective g factor for 2D hole systems is proposed.
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Introduction.—In semiconductors, electric current can
be carried by conduction-band electrons or valence-band
holes. Besides being oppositely charged, these two types
of quasiparticles exhibit strikingly different magnetic
properties. Band electrons are spin-1=2 particles like
electrons in vacuum. In contrast, holes have a spin
angular momentum of 3=2. Size quantization strongly
affects the holes’ spin-3=2 degree of freedom [1]. This is
believed to be the origin of an unusual paramagnetic
response observed for quantum-well-confined holes
[2–4], and the same phenomenon is expected to stabilize
out-of-plane easy-axis magnetism in a dilute-magnetic-
semiconductor (DMS) [5–7] two-dimensional (2D) hole
system [8,9]. Controlling the confinement of holes thus
enables appealing routes toward realizing magnetic semi-
conducting devices based on strain-induced anisotropies
[10] or wave-function engineering in heterostructures
[11,12]. Here we present a detailed theoretical study of
the static spin susceptibility of 2D hole systems, which
reveals unexpectedly rich magnetic properties of p-type
quantum wells. The paramagnetic response is character-
ized by a strongly anisotropic and density-dependent
effective g factor. In a 2D DMS system, valence-band
mixing drives magnetic transitions that could enable new
magnetoelectronic device functionalities [13,14] based
on electric-field manipulation of the magnetization in
low-dimensional systems.

Background and aim.—The magnetic properties of a
many-particle system are most comprehensively charac-
terized by the spin-susceptibility tensor [15]. In a homo-
geneous electron system with spin-rotational invariance,
it has a universal isotropic form that depends only
on the dimensionality of the system [16]. This case
applies to the 2D electron systems realized by confining
carriers from the conduction band in semiconductor
heterostructures as long as inversion symmetry is not
broken by the crystal lattice or due to structuring of
the sample [17–20].

Here we consider the properties of 2D hole systems
whose charge carriers have a spin-3=2 degree of freedom
that is strongly coupled to their orbital motion even when
inversion symmetry is intact [1]. We adopt the Luttinger
model [21] in axial approximation [1,22,23], which pro-
vides a useful description of the uppermost valence band of
typical semiconductors in situations where its couplings to
the conduction band and split-off valence band are irrele-
vant. Subband k-dot-p theory [24,25] is employed to
obtain the lowest quasi-2D hole subbands for a symmetric
hard-wall confinement characterized by its spatial width d;
see Fig. 1. We consider the case where only the lowest 2D
subband is occupied and calculate the spin susceptibility.
Based on this result, we discuss the paramagnetic response
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FIG. 1. Lowest three (each of them doubly degenerate) sub-
bands of a two-dimensional hole system realized by a symmetric
hard-wall quantum-well confinement of width d. Dispersions are
calculated based on the four-band Luttinger-model description of
bulk valence-band states in axial approximation, using band-
structure parameters applicable to GaAs confined in [001] di-
rection, and E0 ¼ ��2

@
2�1=ð2m0d

2Þ. Gray lines indicate the
range of energies and wave vectors for which only the lowest
subband is occupied. This is the regime we focus on in this work.
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of 2D holes and identify various magnetic phases that
emerge in DMS quantum wells.

Spin susceptibility of a quasi-2D system.—The spin
susceptibility of 2D charge carriers is given by [16]

�ijðR;z;R0;z0Þ¼� i

@

Z 1

0
dte��th½SiðR;z; tÞ;SjðR0;z0;0Þ�i:

(1)

Here R and z are components of the position vector in the
2D (xy) plane and in the perpendicular (growth) direction,
respectively. The spin density operator (in units of @) is
defined in terms of field operators�,�y and the Cartesian

components Ĵj of the charge carriers’ intrinsic angular

momentum as SjðR; zÞ ¼ �yðR; zÞĴj�ðR; zÞ. The field

operators can be expressed in terms of operators associated
with general eigenstates [labeled by band index n and in-
plane wave vector k ¼ ðkx; kyÞ] of the noninteracting

Hamiltonian as �ðR; zÞ ¼ P
n

R
d2k
ð2�Þ2 e

ik�R�nkðzÞcnk. The
(normalized) spinors �nkðzÞ and eigenvalues Enk are
obtained by solving the multiband Schrödinger equation
for the confinement in growth direction of the 2D hetero-
structure. We can then express the spin susceptibility as

�ijðR; z;R0; z0Þ ¼
Z d2q

ð2�Þ2 e
iq�ðR�R0Þ�ijðq; z; z0Þ (2a)

in terms of the 2D Fourier-transformed susceptibility

�ijðq; z; z0Þ ¼
X
n;l

Z d2k

ð2�Þ2 W
nl
ij ðk;q; z; z0Þ

� nFðElkþqÞ � nFðEnkÞ
Elkþq � Enk � i@�

; (2b)

where nF denotes the Fermi function, and

W nl
ij ðk;q; z; z0Þ ¼ ½�nkðzÞ�y½Ĵi�lkþqðzÞ�½�lkþqðz0Þ�y

� ½Ĵj�nkðz0Þ�: (2c)

Axial symmetry of the 2D system implies Enk � Enk

(where k � jkj and �k are the polar coordinates of k)
and permits the ansatz [26,27]

�nkðzÞ ¼ e�iĴz�k ��nkðzÞ; (3)

simplifying calculation of the matrix elementsW nl
ij . In the

following, we consider the growth-direction-averaged spin
susceptibility ��ijðqÞ ¼

R
dz

R
dz0�ijðq; z; z0Þ calculated at

zero temperature.
Luttinger-model description of quasi-2D holes.—Using

the 4� 4 Luttinger Hamiltonian in axial approximation for
the bulk valence band, the bound states of 2D holes con-
fined by a potential VðzÞ are given in terms of spinor wave
functions ��nkðzÞ that satisfy the Schrödinger equation
½H 0 þH 1 þH 2� ��nk ¼ Enk

��nk, where

H 0¼ @
2

2m0

�
�11�2~�1

�
Ĵ2z�5

4
1
��

d2

dz2
þVðzÞ; (4a)

H 1¼@
2k

m0

ffiffiffi
2

p
~�2ð�iÞðfĴz; Ĵ�gþfĴz; ĴþgÞ ddz; (4b)
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2k2
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�
Ĵ2z�5

4
1
�
� ~�3ðĴ2þþ Ĵ2�Þ

�
: (4c)

Here m0 is the electron mass in vacuum, hole energies are
counted as negative from the bulk valence-band edge, and

we used the abbreviations Ĵ� ¼ ðĴx � iĴyÞ=
ffiffiffi
2

p
, fA; Bg ¼

ðABþ BAÞ=2. The constants �1 and ~�j are materials-

related band-structure parameters [28] and depend on the
quantum-well growth direction.
Straightforward application of the subband k-dot-p

method [24,25] yields the energy dispersions Enk with
associated eigenspinors ��nk. At k ¼ 0, the eigenspinors

are also eigenstates of Ĵz with eigenvalues �3=2 (heavy
holes) or�1=2 (light holes), which are split in energy. This
phenomenon is often referred to as HH-LH splitting [1,22].

At finite k, the spinors ��nk are not eigenstates of Ĵz any-
more. This phenomenon of HH-LH mixing arises because
a spin-3=2 degree of freedom has a much richer structure
than the more familiar spin-1=2 case [29]. Figure 1 shows
the 2D-subband dispersions obtained for a symmetric
hard-wall confinement of width d, using band-structure
parameters for GaAs confined in the [001] direction. The
numerically obtained Enk and ��nk serve as input for the
calculation of the 2D hole spin susceptibility according to
Eq. (2) with Eq. (3).
Results for the 2D hole spin susceptibility.—Using polar

coordinates (q,�q) for the 2D wave vector q and introduc-

ing the scale �0 ¼ 2m0=ð�1@
2Þ, we find that the tensor

elements of ��ijðqÞ have the generic form
��xxðqÞ ¼ �0½FkðqÞ þGðqÞ cosð2�qÞ�; (5a)

��yyðqÞ ¼ �0½FkðqÞ �GðqÞ cosð2�qÞ�; (5b)

��xyðqÞ ¼ �0GðqÞ sinð2�qÞ; (5c)

��zzðqÞ ¼ �0F?ðqÞ: (5d)

The functions Fk;?ðxÞ and GðxÞ depend on materials and

morphological parameters of the 2D hole system, espe-
cially the hole sheet density n2D � k2F=ð2�Þ, but Gð0Þ ¼ 0
generally. Figure 2 shows typical results obtained at low,
intermediate, and high densities where still only states in
the lowest quasi-2D subband are occupied [30].
The density dependence of the 2D hole spin susceptibil-

ity follows a generic trend. In the limit of low density
[Fig. 2(a)], ��zzðqÞ � ��xxðqÞ � ��yyðqÞ, and the line shape

of ��zzðqÞ is similar to the universal 2D-electron (Lindhard)
result [16]. The strong easy-axis response is expected
[8,9,12] as a result of HH-LH splitting, which favors a
spin-3=2 quantization axis perpendicular to the 2D plane
[1]. Interestingly, the behavior of the spin susceptibility
changes as density is increased. For intermediate values of
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hole density, results like that shown in Fig. 2(b) are
obtained, exhibiting easy-plane anisotropy in the long-
wavelength limit and a nontrivial structure developing at
wave vectors comparable to kF. The significant deviation
from both the universal-2D-electron behavior and also the
easy-axis response expected from HH-LH splitting arises
because, as the 2D hole density is increased, higher-k states
get occupied that are more strongly influenced by HH-LH
mixing. At the highest values of density where still only the
lowest quasi-2D hole subband is populated, easy-axis an-
isotropy is restored in the long-wavelength limit but the

response at finite q becomes as important in strength as that
for q ! 0.
Effective g factors for quasi-2D holes.—Motivated by

recent experimental [2–4] and theoretical [31] interest in
the paramagnetic response of 2D holes, we apply our
results for the spin susceptibility of a noninteracting 2D
hole system to define an effective g factor.
A magnetic field parallel to the j axis couples to the

holes’ spin via the Zeeman term H Z ¼ 2��BBjĴj, where

�B is the Bohr magneton and � the bulk-hole g factor [1].
In the low-field limit, the paramagnetic susceptibility is
given by �P;j ¼ ð2��BÞ2 ��jjðq ¼ 0Þ in terms of our calcu-

lated spin susceptibility [32]. Comparison of this relation
with the expression for the Pauli susceptibility of conduc-
tion electrons from a parabolic band [16] suggests defining
the effective g factor for a many-particle state via �P;j �
ðgj�B

2 Þ2 ��Lðq ¼ 0Þ, which explicitly yields

gj ¼ 4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��jjðq ¼ 0Þ
��Lðq ¼ 0Þ

s
: (6)

Here ��L is the static 2D hole Lindhard function; its q ¼ 0
limit equals the density of states at the Fermi level. We find
a density-dependent and anisotropic g factor, reflecting the
interplay between HH-LH splitting and mixing in confined
valence-band states. Figure 3 shows the density depen-
dence of the transverse (?) and in-plane ( k ) g factors
for a 2D hole system. In the low-density limit, behavior
expected from HH-LH splitting is found, whereas the
paramagnetic response at intermediate and high density
is substantially affected by HH-LH mixing.
2D-hole-mediated magnetism.—Magnetism is intro-

duced into intrinsically nonmagnetic semiconducting ma-
terials via doping with magnetic ions [5–7] such as Mn, Co,
Fe, or Gd. One way to generate an exchange interaction
between any two localized magnetic moments embedded
in a conductor is provided by the Ruderman-Kittel-
Kasuya-Yosida (RKKY) mechanism [15], which gives
rise to the effective two-impurity spin Hamiltonian
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FIG. 2 (color online). q-dependent spin susceptibility for
�q ¼ 0 and values of the 2D hole Fermi wave vector kF as

indicated in the individual panels. Calculations are based on the
band structure shown in Fig. 1.
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FIG. 3 (color online). Effective g factor as a function of the 2D
hole Fermi wave vector kF for a perpendicular (dashed curve)
and in-plane (solid curve) magnetic field.
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H 	
 ¼ �G2
X
i;j

Ið	Þi Ið
Þj �ijðR	; z	;R
; z
Þ: (7)

Here Ið	Þi denotes the ith Cartesian component of an im-
purity spin located at position (R	, z	) and G is the
exchange constant for the contact interaction between the
spin density of delocalized charge carriers with the impu-
rity spins. For a random but on average homogeneous
distribution of magnetic ions, standard mean-field theory
[15] applied to the spin model described by the
Hamiltonian of Eq. (7) yields the Curie temperatures

TðMFÞ
Cj

¼ 8�T0

��jjðq ¼ 0Þ
�0

(8a)

for ferromagnetic order with magnetization direction par-
allel to the j axis. The temperature scale

T0 ¼ IðI þ 1Þ
12

G2

kB

nI
d

m0

�@2�1

(8b)

depends on the impurity-spin magnitude I and the average
3D density nI of magnetic impurities, and its functional
form is that obtained for 2D charge carriers in a parabolic
band [9,33] with effective mass m0=�1.

Figure 4 shows the mean-field Curie temperatures for
perpendicular-to-plane (?) and in-plane ( k ) magnetiza-
tion directions calculated with the same input parameters
used for obtaining the subbands given in Fig. 1. The
density dependence of ��xx;zzð0Þ is directly reflected in

that of Tk;?
C . At the mean-field level, the ordered state

associated with the maximum transition temperature will
be established. Our results suggest that the type of mag-
netic ordering can be modified by changing the 2D hole
density, e.g., by adjusting the gate voltage in accumulation-
layer devices [34]. Easy-axis magnetism prevails at low
and high densities, whereas an unexpected easy-plane
magnetic order emerges at intermediate values of the

density. Also for high densities, a local maximum appears
in ��xxðqÞ at q 	 0:6kF, which almost reaches the value of
��zzðq ¼ 0Þ; see Fig. 2(c). Even after averaging over the
polar angle, we find that for kF � 1:5�=d the in-plane
susceptibility can have a maximum at q � 0 which is as
large as ��zzðq ¼ 0Þ. Thus it may be possible that the high-
density easy-axis ferromagnetic state must coexist (or
compete) with helical magnetism [15].
Finite-temperature effects.—Thermal excitation of spin

waves (magnons) suppresses the magnitude of the magne-
tization below its mean-field value M0. This effect is
captured by the relation [35,36]

MðTÞ
M0

¼ 1� 1

4�2nId

Z
d2qnqðTÞ; (9)

where nqðTÞ is the occupation-number distribution func-

tion of magnon modes at temperature T. A spin-wave-
related critical temperature is defined by the condition

MðTðSWÞ
C Þ ¼ 0 because, for T > TðSWÞ

C , too many magnon

excitations will have been excited to sustain a finite mag-
netization. In equilibrium, nqðTÞ is given by the Bose-

Einstein distribution function nBð"qÞ ¼ 1=ðe"q=½kBT� � 1Þ,
which depends on the spin-wave energy dispersion "q. The

latter’s expression in terms of the charge carriers’
q-dependent spin susceptibility depends on the type of
magnetic order (Heisenberg, Ising, or helical) [35], but
the parametrization

"q ¼ IG2 nI
d
�0

�
�"0 þ �c�

�
q

kF

�
�
�

(10)

typically holds for the relevant energy range. The dimen-
sionless quantities �"0, �, �c� can be determined from the
functional form of the q-dependent spin susceptibility.
Stability of the magnetic order requires both coefficients
�"0 and �c� to be positive. Specializing to our situation of
2D-hole-mediated magnetism, we see from Fig. 2(a) that
the easy-axis magnetism expected at low hole-sheet den-
sities is destabilized by magnons because "q < 0.

Considering the easy-plane magnetism at intermediate
densities, Fig. 2(b) reveals that the associated magnon
dispersion is characterized by � ¼ 2 and �"0 ¼ 0, which
again implies destabilization of this magnetic order due to
spin-wave excitations. For the easy-axis (Ising) magnet
expected at high densities [cf. Fig. 2(c)], we find � ¼ 2
and �"0 > 0. In this case a finite spin-wave-related critical
temperature is obtained. Further studies need to explore the
effect of Coulomb interactions, which can stabilize ferro-
magnetic order mediated by 2D carriers [36].
Conclusions.—The spin susceptibility of 2D holes is

strongly density dependent. In the low-density limit, the
easy-axis response due to HH-LH splitting is exhibited.
With increasing density, HH-LH mixing changes the spin-
related response of confined holes even more drastically
than the density response [37–39]. An effective g factor
for 2D holes is proposed. We clarify the impact of
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FIG. 4 (color online). Mean-field Curie temperatures for

2D-hole-mediated easy-axis (T?
C ) and easy-plane (Tk

C) magne-

tism as a function of the 2D hole Fermi wave vector kF, obtained
for a hard-wall confinement with width d and band-structure
parameters applicable to GaAs.
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band-structure effects in 2D DMS systems that had pre-
viously been only considered for the 3D case [40–42] or
outside the RKKY limit [43]. The switching behavior of
the magnetization found here should be observable in
p-type quantum wells where the 2D hole density is inde-
pendently adjustable [34] and the magnetic doping is suf-
ficiently low to ensure a sizable mean-free path.

The authors benefited from useful discussions with A.H.
MacDonald, J. Splettstößer, and R. Winkler.
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