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Inelastic electron tunneling spectroscopy is a powerful spectroscopy that allows one to investigate the

nature of local excitations and energy transfer in the system of interest. We study inelastic electron

tunneling spectroscopy for topological insulators and investigate the role of inelastic scattering on the

Dirac node states on the surface of topological insulators. Local inelastic scattering is shown to

significantly modify the Dirac node spectrum. In the weak coupling limit, peaks and steps are induced

in second derivative d2I=dV2. In the strong coupling limit, the local negative-U centers are formed at

impurity sites, and the Dirac cone structure is fully destroyed locally. At intermediate coupling, resonance

peaks emerge. We map out the evolution of the resonance peaks from weak to strong coupling, which

interpolate nicely between the two limits. There is a sudden qualitative change of behavior at intermediate

coupling, indicating the possible existence of a local quantum phase transition. We also find that, even for

a simple local phonon mode, the inherent coupling of spin and orbital degrees in topological insulators

leads to the spin-polarized texture in inelastic Friedel oscillations induced by the local mode.

DOI: 10.1103/PhysRevLett.110.026802 PACS numbers: 73.20.At, 73.20.Hb, 85.75.�d

Topological insulators (TIs) are a new state of quantum
matter, which is insulating in the bulk but possesses me-
tallic surface states [1,2]. One of the defining properties of
TIs is their stability to disorder. There exists a topological
invariant associated with the bulk band structure that pro-
tects TIs against any time-reversal invariant perturbations.
Much attention has been focusing on impurity scattering
on the surface of TIs, and a number of novel effects have
been revealed, e.g., suppression of backscattering [3],
absence of Anderson localization [4,5], weak antilocaliza-
tion [6–9], new quasiparticle interference patterns [10–15],
and impurity-induced resonance states [16–19]. However,
the scattering processes considered so far are mostly elastic
scatterings. Much less effort has been devoted to the study
of inelastic scattering processes that involve not only mo-
mentum but also energy transfer. Inelastic scattering pro-
cesses are ultimately related to strong correlation effects,
which is of particular theoretical interest in the study of
topological matter.

In this Letter, we consider the inelastic scattering ofDirac
fermions off a single localized vibrational mode on the
surface of TIs. Such a local bosonic mode can be generated
experimentally by adsorbing nonmagneticmolecules on the
surface of TIs. The local mode is an impurity with internal
degrees of freedom, similar to amagnetic impurity [20–24].
The crucial difference with a magnetic impurity is that here
time-reversal symmetry is preserved. A related model of a
Fermi gas interacting strongly with a localized phonon was
proposed by Yu and Anderson [25], where it was found
that the Fermi gas softens the phonon frequency and gen-
erates an effective double well potential for phonons at

sufficiently strong coupling. This model has been heavily
investigated subsequently (see, e.g., Refs. [26–29]).
The local electronic structure is also substantially modi-

fied by the presence of the local mode, which can be detected
by inelastic electron tunneling spectroscopy (IETS) with a
scanning tunneling microscope (STM) [30,31]. The pre-
STM IETS using metal-insulator-metal tunneling junctions
measures the vibrational spectrum of the dynamical defect
on the insulator, with the peak in d2V=dI2 corresponding to
the vibrational frequency [32–35]. IETS for s-wave super-
conductors was considered in Ref. [36] and for d-wave
superconductors in Refs. [37–39], where it was found that
at weak coupling there is a kink in the dI=dV curve [37] and
at stronger coupling resonance peaks emerge [38]. The
interference of incoming and outgoing waves in inelastic
scattering can also produce standing wave patterns, i.e.,
inelastic Friedel oscillations [40,41].
In this Letter, we calculate the local density of states

(LDOS) for Dirac fermions in the presence of a local mode.
The main results are as follows. (i) In the weak coupling
limit, by using second-order perturbation theory, we find
that at the impurity site there is a kink and a logarithmic
singularity at the local mode frequency !0 in the fermion
LDOS. Correspondingly, in the frequency derivative of
LDOS, i.e., d2I=dV2, there is a step and a peak at !0.
Away from the impurity site, inelastic Friedel oscillations
are shown to be present in d2I=dV2. Similar features are
found for spin-polarized STM. (ii) In the strong coupling
limit, where we have a single site problem, the LDOS
becomes a series of delta functions, forming a single
band at negative frequency. The density of states at the
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Fermi level is fully depleted. The result here is universal in
the sense that it is independent of the band structure of
conduction electrons. (iii) By summing over the noncross-
ing diagrams, we also map out the evolution of LDOS from
weak to strong coupling. At intermediate coupling, two
resonance peaks appear. As coupling further increases, the
peak at positive frequency first becomes higher than the
one at negative frequency, and then the two peaks change
roles, with the negative frequency peak higher than the
positive frequency one. At even stronger coupling, the
positive frequency peak finally dies out.

Inelastic scattering with a localized mode.—The low-
energy Hamiltonian describing the massless Dirac fermi-
ons coupled to the local boson at r ¼ 0 is

H ¼ X

k��0
�k��0cyk�ck�0 þ!0b

y
0b0þg

X

kk0�
cyk�ck0�ðby0 þb0Þ;

(1)

with �k��0 ¼ vfẑ � ð� � kÞ, where vf is the Fermi velocity

and �¼ð�x;�y;�zÞ is the vector of Pauli matrices. The

bare fermion Green’s function G0ðk; i!nÞ ¼ 1=½i!n �
vfð�xky � �ykxÞ� reads in real space and real frequency

G0ðr1; r2;!Þ ¼ 1

4v2
f

�
!Y0

�j!j
vf

r

�
� ij!jJ0

�j!j
vf

r

��

� ẑ � ðr̂� �Þ 1

4v2
f

�
!J1

�j!j
vf

r

�

þ ij!jY1

�j!j
vf

r

��
; (2)

where Ji and Yi are the Bessel function of the first and
second kind, respectively. The local bosonic mode has
propagator Dðk; i!nÞ ¼ Dði!nÞ ¼ 2!0=½ði!nÞ2 �!2

0�.
Multiple scattering of Dirac fermions off the local

bosonic mode can be accounted for by the T matrix, which
modifies the fermion Green’s function to Gðr; r0; i!nÞ ¼
G0ðr; r0; i!nÞ þ G0ðr; 0; i!nÞT ði!nÞG0ð0; r0; i!nÞ. The
T matrix is of the form T ði!Þ¼�ði!nÞ=
½1�G0ð0;0;i!nÞ�ði!nÞ�, where the local self-energy
is calculated from the one particle irreducible (1PI) dia-
grams, with the result �ði!nÞ ¼ �g2T

P
mGð0; 0; i!n�

i�mÞDði�mÞ.
Weak coupling limit.—When the coupling between the

fermions and the local mode is weak, the perturbation
theory can be employed. In this case, the change of
LDOS is small. However, sharp features can be detected
in the frequency derivative of LDOS.

For weak scattering, the T matrix can be approxi-

mated by the one-loop self-energy, �ð0Þði!nÞ ¼
�g2T

P
mG0ð0; 0; i!n � i�mÞDði�mÞ, which reads at

zero temperature

�ð!Þ¼��g2

v2
f

�
ð!�!0Þ ln

�
�

j!�!0j
�
þð!0 !�!0Þ

þ i�½ð!�!0Þ�ð!�!0Þþð!!�!Þ�
�
; (3)

where � is a cutoff. At high temperatures, the imaginary
part of the self-energy at zero frequency can be calculated
numerically, and it becomes linear in temperature, i.e.,
Im�ð! ¼ 0; TÞ ’ �ð2�2g2=v2

fÞT, as expected from the

classical problem of electrons scattering off phonons above
the Debye temperature.
For Dirac fermions coupled to a localized magnetic

atom via exchange interaction J
P

S � cyk��ck0�, the T
matrix becomes g2T

P
G0ðk; i!n � i�mÞ�i�j�ijði�mÞ,

where �ij is the local spin susceptibility. We notice that,

for an isotropic �ij, the effect on the LDOS will be the

same as that of a local phonon, at least for weak coupling.
The effect of such inelastic scattering processes can

be detected by STM, where LDOS Nðr; !Þ ¼
�ð1=�ÞTr ImGðr; r;!Þ is measured. The change of

LDOS has two contributions: One is of the form �Nð1Þ �
Re½TrG2

0ðr; 0;!Þ�Im�ð!Þ, and the other reads

�Nð2Þ � Im½TrG2
0ðr; 0;!Þ�Re�ð!Þ.

Consider first LDOS at the site of the local vibrational

mode. Noticing thatG0ð0; 0;!Þ ¼ 1
4v2

f

ð2!� lnj!j
� � ij!jÞ, for

!> 0, T ¼ 0, one obtains

�Nð1Þ ¼ �!2C1ð!�!0Þ�ð!�!0Þ; (4)

�Nð2Þ ¼ ��!2C2

�
ð!�!0Þ ln �

j!�!0j þ ð!0 ! �!0Þ
�
;

(5)

where C1 ¼ �½ð4=�2Þln2ð!=�Þ � 1�, C2¼ð4=�Þlnð!=�Þ,
and the overall coefficient � / g2. Such a signal can be
seen most clearly from the frequency derivative of LDOS,
i.e., d2I=dV2 (see Fig. 1). Only above the threshold of the
boson frequency can the local mode be excited, and scat-
tering with these excited modes renders the fermion lifetime
finite. Thus Im�ð!Þ is nonzero only for!>!0. This gives

rise to a kink at ! ¼ !0 in �Nð1Þ or, equivalently, a step in

@!�N
ð1Þ. Such a sharp feature also enters Re�ð!Þ via the

Kramers-Kronig relation, resulting in a peak in @!�N
ð2Þ.

The effect of inelastic scattering will be present even
away from the scattering center. Interference between
incoming and outgoing Dirac fermions produces standing
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FIG. 1 (color online). Change of LDOS and its frequency
derivative at the impurity site due to the presence of a local
vibrational mode in the weak coupling limit. Here T ¼ 0,
the local mode frequency is !0 ¼ 10 meV, and the cutoff
� ¼ 300 meV, taken from the bulk gap of TIs (see, e.g.,
Ref. [52] and references therein). Here and in all the figures
below, frequency ! is measured in units of meV.
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waves on the surface of a TI, similar but qualitatively
different from conventional Friedel oscillations. These
standing waves can be seen in the oscillations of the second
derivative @2Iðr; VÞ=@V2, in the narrow window of ener-
gies near the energy of the bosonic mode !0 where inelas-
tic scattering occurs.

From �Nðr; !Þ �G2
0ðr; 0;!Þ�ð!Þ, one can see that the

spatial dependence of the change of LDOS comes from
the free fermion Green’s function G0ðr; 0;!Þ. From the
asymptotic behavior of the Bessel functions, �Nðr; !Þ �
ð1=rÞ cosð2!r=vf þ �0Þ, the period of the standing waves

is set by the bias and the Fermi velocity. For the on-site
LDOS, the sharp features, which have their origin from
�ð!Þ, occur near the boson frequency!0. We plot in Fig. 2
the spatial variation of @!�Nðr; !Þ at T ¼ 1 K. The main
change in this variation as one sweeps through the inelastic
mode is the center peak (below !0) which turns into a dip
(above !0).

A salient feature of the surface state of topological
insulators is the strong coupling between spin and orbital
degrees of freedom, resulting in the locking of spin dy-
namics to that of charge. Such a feature is also manifest in
inelastic scattering processes. Even scattering off a non-
magnetic mode produces sharp features in the magnetic
structure Mðr; !Þ ¼ �Tr ImGðr; r;!Þ�=ð2�Þ, which can
be detected by spin-polarized STM with a magnetic tip,
distinguishing itself completely from a normal metal, for
which Mðr; !Þ vanishes identically in the presence of
nonmagnetic impurities.

The second-order change ofMðr; !Þ due to the presence
of a local mode is �Mðr; !Þ � Img0�g?½r̂� ẑ�, where
G0ðr; !Þ ¼ g0ðr; !Þ�0 þ g?ðr; !Þ½r̂� ẑ� � �. One can
see immediately that �Mz ¼ 0; i.e., the induced magnetic
structure is in plane only. We plot in Fig. 2 the spatial
variation of @!�Mðr; !Þ at different frequencies, with the
magnetic direction of the tip parallel to the surface. One
can clearly see anisotropic inelastic Friedel oscillations
near the boson frequency !0.

Besides local probes, e.g., STM, the effect of inelastic
scattering on the surface of TI can also be measured by
more averaging probes, e.g., angle-resolved photoelectron

spectroscopy, transport. To illustrate this, we consider a
finite but low density of localized vibrational modes on
the surface of a TI. Up to first order in the impurity density
ni, the impurity-averaged fermion Green’s function reads

Ĝðk; !Þ ¼ G0ðk; !Þ½1� �̂ð!ÞG0ðk; !Þ��1, where the self-

energy in the Born approximation is �̂ð!Þ ¼ niT ð!Þ ’
ni�ð!Þ. The resulting spectral function A�ðk; !Þ ¼
�ð1=�ÞImĜ��ðk; !Þ at T ¼ 0 is plotted in Fig. 3. For

j!j<!0, since Im�̂ð!Þ ¼ 0, the spectral function is not
smeared by inelastic processes [42]. Only the dispersion is

slightly modified, with Aðk; !Þ ¼ ð1=2Þ½�ð!� Re�̂ð!Þ þ
vFkÞ þ �ð!� Re�̂ð!Þ � vFkÞ�, retaining the Dirac cone
structure. For j!j>!0, inelastic scattering gives rise to

finite Im�̂ð!Þ, and the spectral function is broadened.
There is a qualitative change at j!j ¼ !0. Although dressed
by thermal fluctuations, one can see from Fig. 3 that such a
pattern is still visible at relatively high temperatures.
Strong coupling limit.—We consider here the strong

coupling limit, where two fermions with opposite spins
are trapped on the impurity site. In this case, one only
needs to consider the single site problem with a coupled
fermion and boson [43]. This is a standard textbook prob-
lem (see, e.g., Ref. [46]). However, the problem here has a
crucial difference with the independent boson model
solved in Ref. [46]. Here since the effective on-site energy
for fermions is negative, in the ground state the fermionic
state is doubly occupied.
As g ! 1, the model reduces to a single site problem:

H ¼ P
���c

y
�c� þ!0b

ybþ g
P

�c
y
�c�ðby þ bÞ, which

can be exactly diagonalized by making the transformation
~H ¼ esHe�s, with s ¼ g

!0

P
�c

y
�c�ðby � bÞ, and the

resulting Hamiltonian reads

~H ¼ !0b
ybþX

�

�
�� � g2

!0

�
cy�c� � 2g2

!0

cy" c"c
y
# c#: (6)

The last term represents an attractive Hubbard interaction
generated by electron-phonon coupling. The local mode
thus forms a negative-U center.
With �� ¼ 0, in the ground state, two electrons are

trapped at the impurity site, while the phonon occupation
is zero. We also notice that, in the strong coupling limit, the
effective on-site energy �� � g2=!0 is always negative,
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FIG. 2 (color online). IETS maps of @2�Iðr; VÞ=@V2 at the
voltages (mV) indicated with T ¼ 1 K, for spin-unpolarized
STM (up) and for spin-polarized STM with spin polarization
given by m0 ¼ 3nð1; 0; 0Þ=4 (down).

FIG. 3 (color online). Impurity-averaged spectral function at
T ¼ 0, 23 K for ky ¼ 0, with !0 ¼ 10 meV, � ¼ 300 meV,

vf ¼ 1, and �g2ni ¼ 0:1½meV��2.
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independent of the band structure. The real-time electron

Green’s function G��0 ðtÞ ¼ �ihTc�ðtÞcy�0 ð0Þi can be writ-

ten in terms of the transformed quantities: G��0 ðtÞ ¼
i�ð�tÞe��Trðe�� ~H~cy�0ei

~Ht~c�e
�i ~HtÞ. Here ~c� ¼ c�X and

~cy
�0 ¼ cy

�0Xy, and the operator X ¼ exp½� g
!0

ðby � bÞ�.
Since the transformed Hamiltonian is a summation of the
electron part and the phonon part, ~H ¼ ~Hc þ ~Hb, the
Green’s function can be factorized as

G��0 ðtÞ ¼ i�ð�tÞe��cTr½e�� ~Hccy
�0ei

~Hctc�e
�i ~Hct�

� e��bTr½e�� ~HbXyð0ÞXðtÞ�: (7)

The phonon part gives a contribution e��ðtÞ, with �ðtÞ¼
g2

!2
0

ð1�ei!0tÞ at zero temperature. The electronic part leads

to exp½�itð�� � 3g2=!0Þ����0 . The resulting spectral
function is a series of delta functions forming a single band:

Að!Þ ¼ e��
X1

n¼0

�n

n!
�

�
!� �� þ 3g2

!0

þ n!0

�
; (8)

with � ¼ g2=!2
0 (see Fig. 4).

Evolution from weak to strong coupling.—Having consid-
ered two limiting cases with weak and strong coupling, now
we proceed to study generic coupling strength, where further
approximations are required, and the LDOScan be calculated
only numerically. We will use the self-consistent Born ap-
proximation, where the T matrix obeys the integral equation

T �1
n ¼

�
�ð0Þ

n þX

m

KnmT m

��1 �Gð0Þ
n ; (9)

where Gð0Þ
n � G0ð0; 0; i!nÞ ¼ ð�i!n=4�v

2
fÞ lnð�2=!2

nÞ
andKnm ¼ �g2TDði!n � i	mÞ½G0ð0; 0; i	mÞ�2.

The numerical results for T ¼ 0 are shown in Fig. 5 for
various coupling strengths. As we increase coupling, the
LDOS starts to deviate from the Dirac cone structure at
! * !0 [Fig. 5(a)], with the spectral weight accumulating
at intermediate frequencies. Two resonance peaks form as
coupling further increases [Fig. 5(b)]. At still stronger
coupling [Fig. 5(c)], the two resonance peaks move
towards lower frequency, with the peak height increasing
sharply, the peak width becoming much narrower, and the
asymmetry in two peaks more pronounced.

We notice that in Figs. 5(a)–5(c), the linear dispersion is
retained near ! ¼ 0. The LDOS is modified only at larger

frequencies. However, qualitative changes occur at even
stronger coupling. While from Figs. 5(b) to Fig. 5(c) more
and more spectral weight moves into the peak at positive
frequency, in Fig. 5(d), the peak at negative frequency
becomes the dominant one. With increasing coupling, the
peak at positive frequency is further suppressed [Fig. 5(e)]
and finally becomes invisible [Fig. 5(f)], as expected from
the above result in the strong coupling limit. The LDOS at
negative frequency also gets depleted near! ¼ 0, with the
Dirac cone structure fully destroyed [Figs. 5(d)–5(f)].
While the changes from Figs. 5(a)–5(c) and from

Figs. 5(d)–5(f) are continuous, there is a sudden qualitative
change from Figs. 5(c) and 5(d), indicating the possible
existence of a phase transition [47]. More sophisticated
methods, e.g., numerical renormalization group, are
needed to settle this issue. The model considered here
can be regarded as a generalization of the extensively
studied pseudogap Kondo model (see Ref. [48] and refer-
ences therein), with the defects having discrete internal
degrees of freedom generalized to defects having continu-
ous internal degrees of freedom. In the pseudogap Kondo
model, where the conduction electrons have a power law
DOS 
ð�Þ � j�jr [49], weak coupling renormalization
group calculations found an unstable renormalization group
fixed point, indicating a phase transition between weak and
strong coupling [50]. However, this method is valid only for
small r, and nonperturbative numerical renormalization
group studies showed that the phase transition disappears
for r � 1=2 in the particle-hole symmetric case [51].
Conclusion.—In conclusion, we have studied the inelas-

tic scattering of Dirac fermions with a single impurity that
has continuous internal degrees of freedom and does not
break time-reversal symmetry. For weak coupling, sharp
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FIG. 4 (color online). LDOS at the impurity site in the strong
coupling limit, with g ¼ 22 meV (left) and g ¼ 8 meV (right).
Here !0 ¼ 10 meV.
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FIG. 5 (color online). Evolution of LDOS from weak to strong
coupling. Here !0 ¼ 10 meV, � ¼ 300 meV, vf ¼ 1, and g ¼
0:003, 0.01, 0.03, 0.1, 0.3, 1 meV.
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features near the local mode frequency (step and peak) can
be detected in d2I=dV2 by using IETS-STM. At intermedi-
ate coupling, resonance peaks appear in the dI=dV curve.
The original Dirac cone structure is fully destroyed locally
at strong coupling. There is possibly a zero temperature
phase transition, and thus a local quantum critical state, at
intermediate coupling, which we leave for future work.
The presence of a finite density of such local modes will
substantially change the transport properties of TIs. It
would be interesting to explore the dephasing effect of
such modes, to study how weak antilocalization is influ-
enced by inelastic scattering.
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