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Silicene (a monolayer of silicon atoms) is a two-dimensional topological insulator (TI) that undergoes a

topological phase transition to a band insulator under external electric field Ez. We investigate a

photoinduced topological phase transition from a TI to another TI by changing its topological class by

irradiating circular polarized light at fixed Ez. The band structure is modified by photon dressing with a

new dispersion, where the topological property is altered. By increasing the intensity of light at Ez ¼ 0, a

photoinduced quantum Hall insulator is realized. Its edge modes are anisotropic chiral, in which the

velocities of up and down spins are different. At Ez > Ecr with a certain critical field Ecr, a photoinduced

spin-polarized quantum Hall insulator emerges. This is a new state of matter, possessing one Chern

number and one-half spin-Chern numbers. We newly discover a single Dirac-cone state along a phase

boundary. A distinctive hallmark of the state is that one of the two Dirac valleys is closed and the

other open.
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Introduction.—A topological insulator (TI) is a distinc-
tive state of matter indexed by topological numbers
and characterized by an insulating gap in the bulk and
topologically protected gapless edges [1,2]. The topolo-
gical classification has been applied to static systems [3]
but recently extended to time-periodic systems [4–9].
A powerful method to drive quantum systems periodi-
cally is to apply electromagnetic radiation to them. It can
rearrange the band structure and change material proper-
ties by photon dressing. TIs may be obtained from a
semimetal [5] and from a band insulator (BI) [8] in this
way. Topological band structures may well be engineered
by application of a coherent laser beam in graphene and
semiconductors. In this Letter, we propose a new type of
topological phase transition in silicene, that is, a photo-
induced transition from a TI to another TI by changing its
topological class.

Silicene, having been synthesized [10–12] only recently,
is gifted with enormously rich physics [13–18]. Silicene
consists of a honeycomb lattice of silicon atoms with
buckled sublattices made of A sites and B sites. The states
near the Fermi energy are � orbitals residing near the K
and K0 points at opposite corners of the hexagonal
Brillouin zone. The low-energy dynamics in the K and
K0 valleys is described by the Dirac theory as in graphene.
However, Dirac electrons are massive due to a relatively
large spin-orbit (SO) coupling �SO ¼ 3:9 meV in silicene.
It is remarkable that the mass can be controlled [14,15]
by applying the electric field Ez perpendicular to the
silicene sheet.

Silicene is a quantum spin-Hall insulator [13] (QSHI),
which is a particular type of TI. It undergoes a topolo-
gical phase transition [14,15] to a BI as jEzj increases
and crosses the critical field Ecr. We investigate a
photoinduced topological phase transition. Under the

off-resonance coherent laser beam, Berry curvatures in
the momentum space, originating from the SO coupling,
are modified in the photon-dressed bands so that the
occupied electronic states change topological properties
[4]. The phase diagram has a remarkably rich structure,
where there are three distinct topological phases in addi-
tion to one trivial phase.
We show that, by applying strong circular polarized

light with frequency � at fixed Ez, silicene is trans-

formed from a QSHI or a BI into a photoinduced

spin-polarized quantum Hall insulator (PS-QHI) and

eventually into a photoinduced quantum Hall insulator

(P-QHI). Here, a PS-QHI is a new state of matter indexed

by one Chern and one-half spin-Chern numbers. On the

other hand, the edge modes of P-QHI are anisotropic

chiral, where the velocities of up and down spins are

different. Furthermore, spin-polarized metal (SPM) and

spin-valley-polarized metal (SVPM) [16] appear on the

crossing points of the two phase boundaries. They have

different spin configurations. A particularly intriguing

state appears along a phase boundary that has only one

closed gap with a linear dispersion. We call it the single

Dirac-cone (SDC) state. It is utterly a new state, as far as

we are aware. The electric field breaks inversion symme-

try, while the light breaks time-reversal symmetry.

When they are both broken, the gap can be different at

K and K0 points. We comment that the Nielsen-Ninomiya

theorem [19], which states that all massless Dirac cones

must come in pairs, is not applicable to the SDC state

since the chiral symmetry is explicitly broken by the

mass term.
Tight-binding model.—The silicene system is described

by the four-band second-nearest-neighbor tight-binding
model [16],
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where cyi� creates an electron with spin polarization � at
site i and hi; ji (hhi; jii) run over all the nearest-neighbor
(next-nearest-neighbor) hopping sites. We explain each
term. (i) The first term represents the usual nearest-
neighbor hopping with the transfer energy t ¼ 1:6 eV.
(ii) The second term [20] represents the effective SO
coupling with �SO ¼ 3:9 meV, where � ¼ ð�x; �y; �zÞ
is the Pauli matrix of spin, with �ij ¼ þ1 if the next-

nearest-neighboring hopping is anticlockwise and �ij ¼
�1 if it is clockwise with respect to the positive z axis.
(iii) The third term represents the first Rashba SO coupling
associated with the nearest-neighbor hopping, which is
induced by external electric field. It satisfies �R1ð0Þ ¼ 0
and becomes of the order of 10 �eV at the critical electric

field Ec ¼ �SO=‘ ¼ 17 meV �A�1 [16]. (iv) The fourth
term [21] represents the second Rashba SO coupling with
�R2 ¼ 0:7 meV associated with the next-nearest-neighbor

hopping term, where �i ¼ �1 for the A (B) site and d̂ij ¼
dij=jdijj with the vector dij connecting two sites i and j in

the same sublattice. (v) The fifth term [16] is the staggered
sublattice potential term. Due to the buckled structure, the
two sublattice planes are separated by a distance that we

denote by 2‘ with ‘ ¼ 0:23 �A. It generates a staggered
sublattice potential / 2‘Ez between silicon atoms at A
sites and B sites in electric field Ez.

Low-energy Dirac theory.—We analyze the physics of
electrons near the Fermi energy, which is described by
Dirac electrons near the K and K0 points. We also call
them the K� points, with � ¼ �. The effective Dirac

Hamiltonian in the momentum space reads [16]

H� ¼ @vFð�kx	x þ ky	yÞ þ �SO�z�	z

� ‘Ez	z þ a�	z�R2ðky�x � kx�yÞ
þ �R1ðEzÞð�	x�y � 	y�xÞ=2; (2)

where �a and 	a are the Pauli matrices of the spin and the
sublattice pseudospin, respectively. The first term arises

from the nearest-neighbor hopping, where vF ¼
ffiffi
3

p
2 at ¼

5:5� 105 m=s is the Fermi velocity with the lattice con-

stant a ¼ 3:86 �A. There is no recognizable effect from the
term �R1ðEzÞ, as far as we have numerically checked.
Although we include all terms in numerical calculations,
in order to simplify the formulas and to make the physical
picture clear, we set �R1ðEzÞ ¼ 0 in all analytic formulas.

There are four bands in the energy spectrum of H�. The

band gap is located at the K and K0 points and given by
2j�ðEzÞj, where [16]

�ðEzÞ ¼ �sz�SO � ‘Ez; (3)

with the spin sz ¼ �1. It is a good quantum number at the
K and K0 points. The spin sz is an almost good quantum
number even away from theK andK0 points because �R2 is
a small quantity.
As jEzj increases, the gap decreases linearly and closes

at the critical point jEzj ¼ Ecr with

Ecr ¼ �SO=‘ ¼ 17 meV= �A (4)

and then increases linearly. Silicene is a semimetal due to
gapless modes at jEzj ¼ Ecr, while it is an insulator for
jEzj � Ecr. It is to be noted that the change of the gap is
suppressed by the screening effect due to the polarization
of the A and B sublattices [15]. Even if the effect is taken
into account, however, the gap changes linearly as a func-
tion of the external field. Hence, the present results
remain true, provided the external field is renormalized
appropriately.
Photoinduced topological insulator.—We consider a

beam of circularly polarized light irradiated onto the sili-
cene sheet. The corresponding electromagnetic potential is
given by

A ðtÞ ¼ ðA sin�t; A cos�tÞ; (5)

where � is the frequency of light with �> 0 for the right
circulation and �< 0 for the left circulation. The light
intensity is characterized by the dimensionless number
A ¼ eAa=@, where A is typically less than 1 for the
intensity of lasers and pulses available in the frequency
regime of our interests. The gauge potential satisfies the
time periodicity, Aðtþ TÞ ¼ AðtÞ, with T ¼ 2�=j�j.
The electromagnetic potential is introduced into the
Hamiltonian (7) by way of the minimal substitution, that
is, replacing the momentum @ki with the covariant mo-
mentum Pi � @ki þ eAi.
A question arises whether a topological classification is

possible in nonequilibrium situation, that is, when the
Hamiltonian has an explicit time dependence. The answer
is yes, provided the potential is time periodic. A convenient
method is to use the Floquet theory [5–9]. The topological
classification is possible with the aid of the static effective
Hamiltonian appropriately constructed.
We summarize the result of the Floquet theory.When the

light frequency is off resonant for any electron transitions,
light does not directly excite electrons and instead effec-
tively modifies the electron band structures through virtual
photon absorption processes. Such an off-resonant
condition is satisfied for the frequency @j�j � t in our
model with � bands. The influence of such off-resonant
light is summarized [7] in the static effective
Hamiltonian defined by �Heff ¼ ði@=TÞ logU, where
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U ¼ T exp½�i=@
R
T
0 HðtÞdt� is the time evolution opera-

tor, with T the time-ordering operator. In the limit of
A � 1,�Heff is particularly simple near the Dirac points:
�Heff ¼ ð@�Þ�1½H�1; Hþ1� þOðA4Þ, where H�1 is the
Fourier component of the Hamiltonian, that is, H�1 ¼
1
T

R
T
0 HðTÞe�itj�jdt. The modification of the Hamiltonian

due to the time-periodic perturbation is understood as the
sum of two second-order processes, where electrons absorb
and then emit a photon and vice versa.

By explicitly calculating the commutation, we have the
effective Hamiltonian, H

�
eff ¼ H� þ�Heff , with

�Heff ¼ �A2

@�
½ð@vFÞ2�	z � ða�R2Þ2�z

� a�R2@vFð�	x�y � 	y�xÞ�: (6)

It modifies the band structure. The modification is remark-
able, which we demonstrate based on analytic formulas by
neglecting the second Rashba terms (/ �R2) since �R2

is a small constant. The gap is given by 2jmDj with the
Dirac mass,

mD ¼ �sz�SO � ‘Ez � �@v2
FA

2��1: (7)

Hence, we can control the Dirac mass by applying electric
field Ez and/or coherent laser beam / A2=�. It is to be
emphasized that the band gaps at the K and K0 points can
be made different in general. We can make one Dirac cone
gapless and the other Dirac cone gapped. This is the SDC
state. The realization of different band gaps at the two
valleys is an entirely new phenomenon. In Fig. 1, we
have illustrated the band structure of the SDC state calcu-
lated based on the tight-binding Hamiltonian (1) together
with the inclusion of the Haldane term (10) we discuss
later.

Spin-Chern number.—Each topological phase is indexed
by the topological quantum numbers, which are the Chern
number C and the Z2 index. If the spin sz is a good quantum
number, the Z2 index is identical to the spin-Chern number
Cs modulo 2. They are defined by C ¼ Cþ þ C� and Cs ¼
1
2 ðCþ � C�Þ, where C� is the summation of the Berry

curvature in the momentum space over all occupied states
of electrons with sz ¼ �1. They are well defined even if
the spin is not a good quantum number [22,23]. In the
present model, the spin is not a good quantum number

because of spin mixing due to the Rashba couplings �R1

and �R2. A convenient way is to calculate them in the
system without the Rashba couplings and then to adiabati-
cally switch on these couplings to recover the present
system [22,23].
When we set �R1 ¼ �R2 ¼ 0, the Hamiltonian (2)

becomes block diagonal. For each spin sz ¼ �1 and valley
� ¼ �, it describes a two-band system in the form
H ¼ � � d, where dx ¼ �@vFkx, dy ¼ @vFky, and dz ¼
mD. The summation of the Berry curvature is reduced to
the Pontryagin index in the two-band system [2]. They are
determined uniquely by the Dirac mass and the valley
index. We explicitly have [17]

C �
sz ¼

�

2
sgnðmDÞ (8)

for the K� valley. The Chern and spin-Chern

numbers are given by C ¼ P
�¼�ðC�þ þ C��Þ and Cs ¼P

�¼� 1
2 ðC�þ � C��Þ, which are shown in the phase diagram

(Fig. 2). The phase boundaries are given by mD ¼ 0 with
(7). A topological phase transition occurs when the sign of
the mass term changes. The topological numbers are
ðC;CsÞ ¼ ð0; 0Þ in the BI, (0, 1) in the QSHI, (� 2, 0) in
the P-QHI, and (� 1, 12 ) in the PS-QHI for E> 0 and�>0

in Fig. 2. In all these states, the band gap is open, where the
Fermi level is present, and they are insulators. We have
derived these results without the Rashba interactions. They
remain true when they are switched on adiabatically.
The Hall conductivity is given for each spin

component by using the Thouless-Kohmoto-Nightingale-
Nijs formula [24], �

sz
xy ¼ e2=ð2�@ÞP�¼�C

�
sz . The charge-

Hall and spin-Hall conductivities are

�xy ¼ �"
xy þ �#

xy; �s
xy ¼ �"

xy � �#
xy: (9)

K

K

K

K

FIG. 1 (color online). The band structure of a silicene in the
SDC state. The gap is open at the K point with a parabolic
dispersion but closed at the K0 point with a linear dispersion.

FIG. 2 (color online). Phase diagram in the (Ez,A2=�) plane.
A circle shows a point where the energy spectrum is calculated
and shown in Fig. 3. Heavy lines represent phase boundaries
indexed by K� and sz ¼"# . A SDC state appears along the line,

which is characterized by a single gapless Dirac cone at the K�

point with spin sz. The topological charges (C, Cs) are also
indicated.

PRL 110, 026603 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

11 JANUARY 2013

026603-3



They are equal to the Chern and spin-Chern numbers up to
the normalization e2=2�@.

Photoinduced edge modes.—A further insight follows
from the fact that the commutator [H�1, Hþ1] is inter-
preted as the second-neighbor hopping [7]. Hence,�Heff is
equivalent to the Haldane model [25],

�Heff ¼ �i�@v2
FA

2=ð3 ffiffiffi
3

p
�Þ X

hhi;jii��
�ijc

y
i�cj�: (10)

Based on this observation, we have calculated the band
structure of a silicene nanoribbon with zigzag edges, which
we give in Fig. 3 for typical points in the phase diagram
(Fig. 2). The edge mode changes between the chiral and
helical states by the topological phase transition.

Conclusions.—We have discovered a class of new
phases by applying circular polorized light to silicene in
the presence of electric field Ez, as summarized in the
phase diagram (Fig. 2) and in the band structures of asso-
ciated nanoribbons (Fig. 3). We summarize their typical
features.

The P-QHI exhibits quantum Hall effects without mag-
netic field. They have anisotropic chiral edge modes. It is
remarkable that the velocities of up and down spins in
chiral edge states are different, as found by the different
slopes of the edge modes in Fig. 4. This is not the case in
graphene [5]. Similarly, the velocities of up and down spins

in helical edge states are different in QSHI. The difference
increases as the intensity of light increases.
The SPM appears at the critical point between the QSHI

and the P-QHI. It is interesting to compare the state with
the spin-valley-polarized metal state appearing at the criti-
cal point between the QSHI and the BI. Due to the identical
spin configuration at the K and K0 points, spin-polarized
topological flat bands in the SPM state emerge (Fig. 4).
A particularly intriguing state is the SDC state emerging

along the phase boundary, where, e.g., the gap is open at
the K point but closed at the K0 point. The spin is up
polarized at theK point and down polarized at theK0 point.
Thus, the net spin is polarized in the SDC state. Hence, this
state is ferromagnetic without magnetic field or exchange
interactions. To create this state, we have broken the time-
reversal and space-inversion symmetries. We comment
that there is no fermion doubling problem in the SDC state
because the chiral symmetry is explicitly broken by the
mass term.
In this Letter, we have studied the second-order effect in

the photocoupling A. When the off-resonant condition
@j�j � t is satisfied, there is no optical absorption.
The lowest frequency is determined by the band width
3t ¼ 4:8 eV ¼ 1015 Hz. Below this frequency, the optical
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FIG. 3 (color online). The photon-dressed band structure of a
silicene nanoribbon at marked points in the phase diagram
(Fig. 2). The vertical axis is the energy in units of t, and the
horizontal axis is the momentum. We can clearly see the Dirac
cones representing the energy spectrum of the bulk. Lines
connecting the two Dirac cones are edge modes. The spin sz is
practically a good quantum number that we have assigned to the
Dirac cones.
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FIG. 4 (color online). Enlarged edge states of silicene nano-
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absorption occurs, which is the first-order effect inA. The
peculiar optical selection rules and circular dichroism have
already been predicted in this regime [18].
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