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We study Coulomb drag in graphene near the Dirac point, focusing on the regime of interaction-

dominated transport. We establish a novel, graphene-specific mechanism of Coulomb drag based on fast

interlayer thermalization, inaccessible by standard perturbative approaches. Using the quantum kinetic

equation framework, we derive a hydrodynamic description of transport in double-layer graphene in terms

of electric and energy currents. In the clean limit the drag becomes temperature independent. In the

presence of disorder the drag coefficient at the Dirac point remains nonzero due to higher-order scattering

processes and interlayer disorder correlations. At low temperatures (diffusive regime) these contributions

manifest themselves in the peak in the drag coefficient centered at the neutrality point with a magnitude

that grows with lowering temperature.
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Frictional drag in double-layer systems consisting of
two closely spaced, but electronically isolated conductors
is a well established experimental tool for studying the
microscopic structure of solids [1–7]. In such an experi-
ment a current I1 is passed through one of the conductors
(the ‘‘active’’ layer) and the induced voltage drop V2 is
measured along the other (‘‘passive’’) layer. The ratio of
this voltage to the driving current �D ¼ �V2=I1 (known as
the drag coefficient or the transresistivity) is a measure of
both the interlayer interaction [1,2] and the microscopic
state [3–6] of the layers. At low temperatures the drag
effect is dominated by direct Coulomb interaction between
the carriers in the two layers.

The physics of Coulomb drag is well understood if both
layers are in the Fermi-liquid state [8,9], where the micro-
scopic mechanism of the effect is based on the momentum
transfer from the current-carrying state in the active layer
to the passive layer by the interlayer Coulomb interaction.
The interlayer momentum transfer can be described by
the effective relaxation rate ��1

D . The most basic qualita-
tive features of the drag measurement [1,8,9] can already
be inferred by estimating ��1

D with the help of Fermi’s
golden rule, where it is crucial to take into account
the energy dependence of the density of states (DOS)
and/or diffusion coefficient D, reflecting the electron-
hole (e-h) asymmetry.

The drag coefficient �D and momentum relaxation rate
��1
D can be related using a simple Drude-like model.

Consider the phenomenological equations of motion,
assuming for simplicity that both layers are characterized
by the same carrier density n and effective mass m

d

dt

j1

j2

 !
¼ e2n

m

E1

E2

 !
� 1

�D

1 �1
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 !
j1

j2

 !
� 1

�

j1

j2

 !
;

(1)

where j1ð2Þ is the average current density in the active

(passive) layer, E1ð2Þ is the electric field in the two layers,

and � is the impurity scattering time. Noting that in the
drag measurement no net current is allowed to flow in the
passive layer j2 ¼ 0, we arrive at the Drude-like formula
�D ¼ ��12 ¼ ðe2n�D=mÞ�1, where ��1

D may be estimated
using Fermi’s golden rule. More rigorous calculations
based on either the diagrammatic perturbation theory [8]
or the kinetic equation [9] result in the ‘‘Fermi-liquid’’
expression

�FL
D ¼ ðh=e2ÞA12T

2=ð�1�2Þ; (2)

where�1ð2Þ is the chemical potential of the active (passive)

layer and A12 is determined by the matrix elements of
the interlayer interaction. (The precise form of A12 as a
function of the interlayer spacing d depends on whether
transport in the two layers is ballistic or diffusive [8].)
Even though the drag coefficient (2) is apparently inde-

pendent of the impurity scattering time �, transport prop-
erties of each individual layer are usually [1,8] assumed to
be dominated by disorder, � � �D: solving Eq. (1) for the
resistivity one finds the usual Drude formula. In contrast,
the behavior of clean double-layer systems, i.e., with � �
�D, is less trivial. In this case, the last term in Eq. (1) may
be neglected leading to the nonzero result for the single-
layer resistivity
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�11 ¼ ��12 ¼ ðe2n�D=mÞ�1 ¼ �D: (3)

Note, that the system is still characterized by the infinite
conductivity (�̂�1 ¼ 1), as expected for disorder-free con-
ductors on the grounds of Galilean invariance.

The physical picture of the drag effect outlined so far is
based on the following assumptions: (i) each of the layers
is assumed to be in a Fermi-liquid state, which at the very
least means �1ð2Þ � T; (ii) electron-electron interaction

does not contribute to the transport scattering time; (iii) the
interlayer Coulomb interaction is assumed to be weak
enough, � ¼ e2=vF � 1 (we adopt the units where @ ¼ 1
restoring the Planck’s constant in final results), such that �D

is determined by the lowest-order perturbation theory [8].
Lifting one or more of the above assumptions leads to

significant changes in the drag effect [3–5,7,10,11]. In this
Letter we focus on the system of two parallel graphene
sheets [7,10–21], which offers a great degree of control
over the microscopic structure of the two layers. Indeed,
using hexagonal boron nitride as a substrate [11,22], one
can decrease disorder strength in the system and reach
the regime, where transport properties of the two layers
are dominated by electron-electron interaction, � � �ee.
Moreover, the carrier density can be electrostatically con-
trolled allowing one to scan a wide range of chemical
potentials from the Fermi-liquid regime to the Dirac point.

In this Letterwe establish a dragmechanismbased on fast
interlayer thermalization in graphene (inaccessible by stan-
dard perturbative approaches to drag). Using the quantum
kinetic equation (QKE) approach, we derive hydrodynamic
equations generalizing Eq. (1) for interacting Dirac
fermions (for related work in monolayer graphene see
Refs. [23–25]). The distinct feature of the hydrodynamic
approach to electronic transport in graphene is inequiva-
lence of the electric current and total momentum. The latter
is furthermore equivalent to the energy current. The result-
ing drag is governed by a nontrivial interplay of current and
energy relaxation. In the ultraclean limit, this yields �D �
ðh=e2Þ�2�1�2=ð�2

1 þ�2
2Þ, which remains finite in the limit

�1 ¼ �2 ! 0. If disorder is present, then �D is modified,
see Figs. 1 and 2. At the Dirac point, the leading-order
contribution to �D vanishes due to e-h symmetry. Taking
into account either the next-order (� �3) scattering or inter-
layer disorder, correlations yield a peak centered at the
Dirac point with a magnitude that grows with lowering T�.

Kinetic equation.—We now briefly outline the derivation
of the QKE for double-layer graphene structures and its
solution in the ballistic regime (see Supplemental Material
[26]). Consider an infinite sample in an infinitesimal,
homogeneous electric field E1 applied to the active layer.
The response of the system to the field can be described by
the small nonequilibrium corrections h1ð2Þ to the Fermi

distribution functions defined by

nið�; v̂Þ ¼ nðiÞF ð�Þ þ T
@nðiÞF ð�Þ
@�

hið�; v̂Þ; (4)

where the eigenstates of the Dirac Hamiltonian H ¼ v�p
are labeled [26] by their energy � and the velocity unit
vector v̂; the momentum of the particle is p ¼ �v̂=v.
Linearizing the QKE [27] for small hi we find

@h1
@t

þ eE1 � v
T

¼ �h1
�
þ I11fh1g þ I12fh1; h2g;

@h2
@t

¼ �h2
�
þ I22fh2g þ I21fh2; h1g;

(5)

FIG. 1 (color online). Leading-order drag coefficient in the
ballistic regime as a function of carrier densities (in units of
1011 cm�2) for d ¼ 9 nm. Left: �D at T ¼ 250 K; the upper left
panel refers to ultraclean graphene ��1 ¼ 0:5 K; the lower left
panel shows the evolution of �D with increasing disorder from
��1 ¼ 0 to ��1 ¼ 50 K. Right: �D for ��1 ¼ 50 K; the lower
panel shows �D for T ¼ 150, 200, 250, and 300 K.

FIG. 2 (color online). Drag coefficient for identical layers,� �
minðT=�; v=dÞ, and uncorrelated disorder. Bottom row (��1 �
�2T and below the curve 2,��1 � �2T2=�): solutions of theQKE
(12). Curve 1 (��1 ¼ �2�2=T) separates the two regimes in
Eq. (14). Middle row (�2T � ��1 � T): region where the QKE
approach overlaps with the perturbation theory of Ref. [16].

The third-order contribution �ð3Þ
D ¼ Oð�3Þ yielding nonzero drag

at� ¼ 0 is shown in red. Upper row (��1 � T): diffusive regime

[see Eqs. (16) and (17)], where �ð3Þ
D saturates for ��1 � T=�2).
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where the linearized pair-collision integrals are given by

Iij ¼ �
Z

d2d3d4Wijðhi;1 � hi;2 þ hj;3 � hj;4Þ;
Wij ¼ �ðp1 � p2 þ p3 � p4Þ�ð�1 � �2 þ �3 � �4Þ

� cosh�1��i

2T

2 cosh�2��i

2T cosh
�3��j

2T cosh
�4��j

2T

Kij
1;2;3;4;

(6)

and we have used short-hand notations hi;a ¼ hð�a; v̂aÞ,
da ¼ �ð�aÞdv̂ad�a, with a ¼ 1, 2, 3, 4. To the lowest order
in interlayer interaction, the kernel

Kij
1;2;3;4 ¼ jUijðp1 � p2Þj2ð1þ v̂1v̂2Þð1þ v̂3v̂4Þ=4; (7)

comprises the interaction matrix element jUijj2 and the
Dirac factors. Here we take into account only the Hartree
interaction term: there is no exchange interaction between
the layers, whereas within the layers the Hartree term
dominates if the number of electron flavors is large (physi-
cally, N ¼ 4 due to spin and valley degeneracy).

The peculiarity of the inelastic scattering in the Dirac
spectrum is twofold. First, since the velocity v ¼ v2p=� is
independent of the absolute value of the momentum, total
momentum conservation does not prevent velocity (or
current) relaxation. As a result, the intralayer collision
integral Iii yields a nonzero transport relaxation rate due
to electron-electron scattering.

Second, the scattering of particles with almost collinear
momenta is enhanced since the momentum and energy
conservation laws coincide for collinear scattering. This
restricts the kinematics [23,24,28] of the Dirac fermions
leading to the singularity in the collision integral. This
singularity leads to the fast thermalization of particles
within a given direction, which justifies the Ansatz:

hið�; v̂Þ ¼ ð�ðiÞ
v þ �ðiÞ

p �=TÞeE � v=T2: (8)

The Ansatz (8) retains the only two relevant modes for
which the collision integral Iij is not singular: the ‘‘mo-

mentum mode’’ �ðiÞ
p , which nullifies the collision integral

due to momentum conservation, and the ‘‘velocity mode’’

�ðiÞ
v , which nullifies Iij in the case of collinear scattering.

The same kinematic restrictions lead to fast unidirectional
thermalization between the layers. This allows us to set

�ð1Þ
p ¼ �ð2Þ

p , and hence reduce the QKE for the double-
layer setup to a 3� 3 matrix equation.

Consider for simplicity the case of identical layers (for
the more general case of �1 � �2 see Supplemental
Material [26]). Integrating the reduced QKE over the ener-
gies, we arrive at the set of steady-state hydrodynamic
equations in terms of the particle currents

Ji ¼ �NT
Z

d��ð�Þ @n
ðiÞ
F

@�

Z
dv̂vhið�; v̂Þ; (9)

and the total momentum P ¼ e�0C
2
1ðE1 þE2Þ�:

e�0
E1

E2

 !
¼
�
1

�
þ Îee � ÎD

�
J1

J2

 !
þ
�
1

�D
� 1

�ee

�
P

P

 !
;

(10)

where ÎeeðDÞ¼½ð	̂0þ	̂1ÞC2
1þ2	̂0ð1ÞC2�=�eeðDÞ. The intra-

and interlayer electron-electron transport scattering
rates are (W ij ¼ Wij=cosh2½ð�1 ��iÞ=ð2TÞ�)
1

�D
¼ 1

4T�0C2

Z Y4
a¼1

daW 12ðv1 � v2Þðv4 � v3Þ;

1

�ee
¼ 1

8T�0C2

Z Y4
a¼1

da½W 11ðv1 � v2 þ v3 � v4Þ2

þ 2W 12ðv1 � v2Þ2�; (11)

	k are the Pauli matrices in ‘‘layer space’’, the coefficients
C1 ¼ h�i�=T ��=T, C2 ¼ ðh�2i� � h�i2�Þ=T2 � const are
the average energy and energy variation, �0 ¼ 2TJ f1g=N
is a typical energy, and

J f� � �g ¼ �v2

T

Z
d��ð�Þ@nF

@�
� � � ; h� � �i� ¼ J f� � �g

J f1g :

The hydrodynamic equations (10) generalize the equa-
tions of motion (1) to the case of Dirac fermions. The
kinematic peculiarity of Dirac fermions manifests itself in
the appearance of the total momentum (energy current),
which entangles the electric fields in the two layers.
Solving Eq. (10) we find

�ð2Þ
D ¼ h

e2
C2

2
�0

ð��DÞ�1 þ C2
1½��2

ee � ��2
D �

��1 þ C2
1½��1

ee � ��1
D � : (12)

Equation (12) gives the general expression for the drag
coefficient in the ballistic regime (see Fig. 1 for illustra-
tion). Below, we discuss the asymptotic behavior of �D

(summarized in Fig. 2) focusing on the experimentally
relevant case [7,10,11] Td=v < 1.
Clean system.—In the limit � ! 1, the resistivity matrix

is degenerate and the drag coefficient is given by

�ð2Þ
D ð� ! 1Þ ¼ ðh=e2ÞðC2=2
�0Þð��1

D þ ��1
ee Þ: (13)

This result illustrates the remarkable feature of double-
layer graphene, where in addition to the standard drag
mechanism due to direct interlayer current relaxation
(��1

D ), there exists another mechanism governed by the
interplay of fast interlayer energy relaxation (��1

E � ��1
ee )

and intralayer current relaxation (��1
ee ), which is insensitive

to the e-h asymmetry.
At the Dirac point � ¼ 0, Eq. (13) yields nonzero drag

already in the lowest order in the interlayer interaction

�ð2Þ
D � ðh=e2Þ�2 (where it is determined by ��1

ee � �2T;
the ‘‘drag rate’’ ��1

D appears only in the next order,
��1
D ð� ¼ 0Þ � �3T and remains subleading).
Ballistic regime.—For weak, uncorrelated disorder

�2T� � 1 (i.e., ��1 � ��1
ee ), the lowest-order contribution

PRL 110, 026601 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

11 JANUARY 2013

026601-3



to �D near the Dirac point can be obtained from Eq. (12)
by setting ��1

D � �2�1�2=T, ��1
ee � �2T, �0 � T,

C2
1 ��1�2=T

2, and C2 � 1:

�ð2Þ
D ð�i �TÞ� 2:87

h

e2
�2 �1�2

�2
1þ�2

2þ0:49T=ð�2�Þ : (14)

Precisely at the Dirac point �ð2Þ
D ð�i ¼ 0Þ ¼ 0, while in the

immediate vicinity �D grows sharply, see Fig. 1. However,
refining the collision integrals (6) by taking into account
either (i) the next-order matrix elements, or (ii) interlayer
disorder correlations, leads to non-zero �Dð�i ¼ 0Þ [26]. In
the former casewefind�ð3Þ

D ð�i ¼ 0Þ � ðh=e2Þ�3. The result
in the latter case depends on the length scale characterizing
the correlations: within the model of correlated impurity
scattering �corr

D � ðh=e2Þ�2=ðT�Þ; for long-range correla-

tions we find �corr
D � ðh=e2Þ�2T�2F

ð�Þ
12 ð0Þð1þ �2NT�Þ,

where F
ð�Þ
12 ð0Þ is the correlator of chemical potential fluc-

tuations in the two layers [26,29].
For intermediate disorder strength �2T � ��1 � T the

applicability region of the QKE overlaps with that of the
conventional perturbation theory developed in Ref. [16]
and we recover perturbative results, see Fig. 2.

Diffusive regime.—For even stronger disorder (or at low
temperatures) T� � 1, the electron motion becomes dif-
fusive. In this regime, the standard perturbative approach
is applicable. The lowest-order perturbative calculation [8]
amounts to evaluation of the Aslamasov-Larkin-type
diagram for the drag conductivity given by

	��
D ¼ 1

16
T

X
q

Z d!

sinh2 !
2T

��
1 ð!;qÞ��

2 ð!;qÞjDR
12j2; (15)

where DR
12 is the retarded propagator of the interlayer

interaction and ��
a ð!; qÞ is the nonlinear susceptibility

[in fact, all previous studies of the Coulomb drag in gra-
phene [12–20] focused on Eq. (15)]. In the diffusive
regime, ��

a ð!; qÞ can be found using Ohm’s law and the
continuity equation [30] � ¼ eqð@	=@nÞIm�R. Close to
the Dirac point � � T � ��1 the derivative @	=@n�
nv4�4 (independently of the precise nature of impurities).
After this the evaluation of Eq. (15) is rather standard
(except that, in contrast to Ref. [8], the Thomas-Fermi
screening length is much longer than the interlayer spacing
ßd � 1) and yields

�ð2Þ
D ð�i � T � ��1Þ � ðh=e2Þ�2�1�2T�

3; (16)

vanishing at �i ¼ 0 due to the electron-hole symmetry.

The importance of the electron-hole asymmetry for �ð2Þ
D

follows from Eq. (15): the nonlinear susceptibility can be

thought of as a measure of the asymmetry. But �ð2Þ
D domi-

nates the observable effect only under standard assump-
tions of the Fermi-liquid behavior in the two layers
(� � v=d � T,�� � 1). On the contrary, in the vicinity
of the Dirac point in graphene, the next-order contribution

�ð3Þ
D [31] as well as disorder correlations [26,32] become

important and yield non-zero drag at �i ¼ 0.
The explicit results of Ref. [31] were obtained in the

usual limit ßd � 1. Extending these calculations to the
opposite case ßd � 1 we find close to the Dirac point

�ð3Þ
D ð�i�T���1���2TÞ�ðh=e2Þ�3ðT�Þ�3=2; (17)

and �ð3Þ
D � h=e2 for ��1 � ��2T (at the same time

�corr
D vanishes at low T as �corr

D � ðh=e2Þ�2ðT�Þ2 [26]).
Away from the Dirac point this contribution decays

as a function of the chemical potential �ð3Þ
D ð�� �

max½1; ��1ðT�Þ1=2�Þ � ðh=e2Þð��Þ�3 and rapidly becomes

subleading. As a result, �ð3Þ
D is only detectable at low T and

�, see Fig. 3.

While estimating �ð3Þ
D ð�i ¼ 0Þ, we assume the single-

layer conductivity 	� e2=h discarding localization
effects: experiments on high-quality samples show
T-independent	 down to 30mK [33], that can be explained
by the specific character of disorder in graphene [34].
Summary.—We have studied Coulomb drag in double-

layer graphene structures. We have shown that drag in
graphene drastically differs from that in conventional
double-layer structures. By using the QKE formalism, we
have derived the hydrodynamic description and established
a graphene-specific drag mechanism based on fast inter-
layer thermalization. For weak disorder (or high T; ballis-
tic regime) �D near the Dirac point is given by Eq. (14), see
also Fig. 1, which is consistent with Ref. [10]. For strong
disorder (or low T; diffusive regime), the usually sublead-
ing third-order and correlated disorder contributions domi-
nate the effect and yield a peak centered at the Dirac point
similar to experiment [11,35].
We thank A. K. Geim, K. S. Novoselov, and L.

Ponomarenko for communicating their experimental
results prior to publication. We are grateful to J.
Schmalian, M. Müller, V. Kachorovskii, A. Dmitriev,
D. Polyakov, and L. Fritz for discussions and to DFG
SPP 1459 and BMBF for support.
Note added in proof.—Recently, we became aware of a

related study by J. Lux and L. Fritz [36].

1 1

D ,

T 3 2

T 2

T T 1

2 1 1 T

1

3

D 0

FIG. 3 (color online). Schematic view of the drag coefficient at

low temperatures. Left: �ð2Þ
D ð�Þ (solid line) and �ð3Þ

D ð�Þ (blue

dashed line). The arrows indicate the tendency of the two terms

with the decrease of temperature T ! 0. Right: �ð3Þ
D ð� ¼ 0Þ and

�corr
D ð� ¼ 0Þ (solid line) as functions of T [26].
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