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We study the fractionalization of an electron tunneling into a strongly interacting electronic one-

dimensional ring. As a complement to transport measurements in quantum wires connected to leads, we

propose noninvasive measures involving the magnetic field profile around the ring to probe this

fractionalization. In particular, we show that the magnetic field squared produced by the electron and

the power that it would induce in a detector exhibit anisotropic profiles that depend on the degree of

fractionalization. We contrast true fractionalization with two other scenarios which could mimic

it—quantum superposition and classical probabilistic electron insertion. We show that the proposed

field-dependent measures and those of the persistent current can distinguish between these three scenarios.
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A spectacular feature of strongly correlated low-
dimensional electronic systems is that collective behavior
renders the electron completely unstable, resulting in its
fractionalization [1–8]. As a prime example, in a one-
dimensional quantum wire, the Tomonaga-Luttinger liquid
(TLL) theory predicts that a momentum-resolved electron
tunneling into the wire splinters into charges ð1� gÞe=2
moving in opposite directions, where g, the Luttinger
parameter, depends on the ratio of interactions and the
Fermi energy and is unity in the absence of interactions
[2,4]. Exciting developments in experimental capabilities
have enabled the physical realization of such a situation
[9]. These studies inspire revisiting fractionalization in a
new light and addressing a spectrum of theoretical and
physical issues. For instance, can one distinguish true
fractionalization from quantum mechanical probabilistic
processes? Or even classical probabilities? Are there ge-
ometries which could eliminate one of the biggest banes in
detecting fractionalization—the effect of leads [2,10–14]?
What measurements in such geometries could pinpoint
true fractionalization? In this Letter, we answer each of
these questions in the context of the ring geometry illus-
trated in Fig. 1.

Here, an electron tunnels from a lead into a thin meso-
scopic ring and, as with the quantum wire [15], has a
well-defined momentum profile. Strong interactions within
the ring cause an electron associated, for instance, with
clockwise Fermi momentum to decompose into two
components of charge ð1� gÞe=2 moving in clockwise
(CW) and counterclockwise (CCW) directions. Our study
focuses on the magnetic field produced by such a situation
and the signatures of fractionalization reflected in the
spatial distribution of higher moments involving this field.
Specifically, we propose measurements of the time-
averaged field squared, as for instance can be measured
by a superconducting quantum interference device, and the
power induced by the field in a pickup loop (see Fig. 1).

These measurements have the advantage of purely entail-
ing dc quantities as opposed to high frequency measure-
ments (such as in Ref. [16]) and of constituting weak, i.e.,
noninvasive, readouts when compared with those involving
the attachment of leads.
Fractionalization emerges from the strongly correlated

nature of the many-body wave function and is fundamen-
tally different from quantum mechanical superpositions
or classical probabilities involving individual particles
even though these processes can mimic one another in
measurements. To elucidate this point and to distinguish
signatures of ‘true’ fractionalization, we analyze features
of the fractionalized state jFi and contrast it to a specific
quantum superposition state, jQSi, and a classical
probabilistic scenario, M�. First, the fractionalized

many-body excited state resulting from the tunneling of

a CW-moving electron c y
þðxÞ having a wave function

spread �ðxÞ above the TLL ground state, jGiLL, is given
by jFi ¼ R

�ðxÞc y
þðxÞdxjGiLL [17]. A quantum superpo-

sition state, jQSi, that mimics the fractionalized state
would consist of superpositions of CWðþÞ=CCWð�Þ

FIG. 1 (color online). (a) Oblique view of the setup in which a
clockwise-moving electron injected into the ring from tunnel
junction T fractionalizes into clockwise- and counterclockwise-
moving quasiparticles. (b) Top-down view of the same setup

with an overlay of a spatial plot of hB2i predicted for a ring with
Luttinger parameter g ¼ 0:2.
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electrons excited above a noninteracting Fermi gas

ground state jGi0, i.e., jQSi¼P
�f�

R
�ðxÞc y

�ðxÞdxjGi0,
where f� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� gÞ=2p

correspond to the mimicking
probabilities. A classical probabilistic situation would
correspond to an ensemble of CW and CCW electrons
excited in the noninteracting Fermi gas, denoted by

the density matrix M� ¼ P
�f2�j�ih�j, where j�i ¼R

�ðxÞc y
�ðxÞdxjGi0. In what follows, after introducing

fractionalization in the TLL liquid ring setting, we
show that a combination of the two magnetic field mea-
sures combined with persistent current signatures in the
mesoscopic ring at once distinguish the three different
scenarios and provide a means of extracting the Luttinger
parameter.

To briefly summarize TLL physics in a ring geometry
(see, for example, Ref. [18]), we consider a one-
dimensional system with position x denoting the circum-
ferential direction bounded by 0 � x < 2�R, where R
is the radius of the ring. The ring geometry imposes
periodic boundary conditions on electron operators such

that c ðxþ 2�RÞ ¼ ei2��=�0c ðxÞ, where � is any flux
threading the ring and �0 ¼ h=e. For electrons filling a
Fermi sea, we decompose the electron operators as c ðxÞ ¼P

rc rðxÞ where c y
r denotes the creation operator for a

r ¼ � moving electron. The kinetic energy for linearized
low-energy modes moving at a Fermi velocity vF takes the

form H0 ¼ �ivF

R
dx

P
rc

y
r @xc r. As is commonly done,

we restrict interaction effects to the short-range form
Hint ¼ V

R
dx�2ðxÞ, where � ¼ e

P
r¼��r is the sum of

charge densities �r ¼ c y
r c r. Of physical interest, the

current operator is given by Î ¼ evFj, where j ¼
P

rr�r.
This model is amenable to a bosonization treatment

via the transformation c rðxÞ � eirkFxei
ffiffiffi
�

p
’rðxÞ giving �r ¼

kF=2�þ r@x’r=
ffiffiffiffiffiffiffi
2�

p
, where the chiral bosonic fields ’r

satisfy the commutation relations ½’rðxÞ; ’r0 ðx0Þ� ¼
ir�rr0sgnðx� x0Þ and kF is the Fermi momentum. The
net Hamiltonian H0 þHint may be brought into the free
TLL form via a Bogoliubov transformation of the � fields
[19], yielding

HLL ¼ u

4

Z
dx½ð@x ~’þÞ2 þ ð@x ~’�Þ2�; (1)

where u ¼ vF=g is the the plasmon velocity, g is the

Luttinger parameter with g � 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2V=�@vF

p
, and

~’�ðx� utÞ are transformed chiral bosons.
The fractionalization of an electron can be seen by

representing an electron operator having CW Fermi mo-
mentum in terms of the chiral bosons:

c y
þðx; tÞ � e�ikFxe

�i
ffiffi
�

p
2
ffiffi
g

p ½ð1þgÞ~’þðx;tÞþð1�gÞ ~’�ðx;tÞ�: (2)

By relating the chiral bosonic fields to the charge and
current density operators, � and j, respectively, it follows

that the operator e�i
ffiffi
�
g

p
~’þðx;0Þ creates a unit charge e that at

time t can be found at position x� ut. Thus, we see that the
electron operator in Eq. (2) creates the fractional charges
ð1� gÞe=2moving in opposite directions. More explicitly,
in the situation of interest, the state of the ring after the
injection of a CW-moving electron at time t ¼ 0 is given

by jFi ¼ R
�ðxÞc y

þðx; t ¼ 0ÞdxjGiLL [5]. It is straightfor-
ward to calculate the expectation value of the current in this

state, Iðx; tÞ ¼ hÎiF � hFjÎðx; tÞjFi, yielding

Iðx; tÞ ¼ eu

4�R
½ð1þgÞj�ðx�utÞj2þð1�gÞj�ðxþutÞj2�:

(3)

The form of the current explicitly demonstrates that the
electron splinters into two components that rotate in oppo-
site directions, have the same profile �ðxÞ, and carry
charges ð1� gÞe=2.
The magnetic field produced by these counterpropa-

gating charges can be evaluated by using the Biot-Savart
law to define the magnetic field operator at position r as

B̂ ¼ �0

4�

R
d‘Îð‘Þ � r=jrj3, where�0 is the permeability of

free space. At any given point having polar coordinates
(r, �) in the plane of the ring, where the origin is at the ring’s
center and the electron is inserted at (R, 0), the current in
Eq. (3) produces a field perpendicular to the plane. For the
case of � having a spread much smaller than the ring
diameter, the z component of the field takes the form

hB̂ziF ¼ �0e!

2R
½ð1þ gÞhðtÞ � ð1� gÞhð�tÞ�; (4)

where !¼u=R and hðtÞ ¼ ½1� aðtÞ�=½r2
R2 � 2aðtÞ þ 1�3=2,

aðtÞ ¼ r cosð!t� �Þ=R. In principle, a time-resolved mea-
surement of the magnetic field, as with other quantities,
such as the conductance, would yield information on
fractionalization. However, as is the goal here, we seek
low-frequency or time-averaged signatures. Although the
tunneling of the electron picks out a specific point on the
ring, signatures are effaced by time averaging any quantity

that is linear in the ring current. For example, hBzi shows an
isotropic spatial profile. [Here, we use h	i to denote time-
dependent quantum mechanical or statistical expectation
values of the specific state in question and an overline �	
for a long ( 
!�1) time average.]
We thus focus on two measures that are quadratic in the

current and can be obtained from a continuous weak linear
measurement [20] via inductive coupling to the ring.

The first is simply Sðr; �Þ ¼ hB2
zi, which can be accessed

in a superconducting quantum interference device detector
biased to a minimum of its I-V characteristic curve. The
second is the average power received by a detector, for
example, an ultrasensitive bolometer. For a small conduct-
ing detector (ignoring local spatial variations in the mag-

netic field), this is given by Pðr; �Þ ¼ h@tBzi2. Crucially,
note that the former involves a quantum average of a
quadratic operator and the latter that of a linear operator.
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The forms of the moments S and P can be easily
evaluated by taking appropriate quantum expectations

(hi) and time averages (overline) to obtain Sðr; �Þ ¼
ð�0e!

2R Þ2½ð1þ g2Þh2ðtÞ � ð1� g2ÞhðtÞhð�tÞ� and a similar

form for ~P � P=!2 with hðtÞ replaced by its time deriva-
tive h0ðtÞ. Information on fractionalization is best analyzed
by resolving these quantities into their angular Fourier
coefficients:

S= ~Pðr; �Þ ¼
�
�0e!

2R

�
2 X1
m¼0

AS=P
m ðrÞ cos2m�: (5)

In the noninteracting (g ¼ 1) limit, an electron circles the
ring in the CW direction, retaining rotational symmetry on

average and thus we have AS=P
m ¼ 0, m � 0.

The plots in Fig. 2 capture our central result that higher
moments of the current and of the magnetic field profile
(in our case, S and P) reflect the concurrent motion of
fractionalized charge components in their rotational sym-
metry broken distributions. In the explicit forms of S and P

above, given that h2ðtÞ preserves rotational symmetry

while hðtÞhð�tÞ breaks it, we see that primarily AS=P
0 scale

as 1þ g2 and AS=P
m�0 as 1� g2. This distribution is illus-

trated in the plots of Fig. 2 and also agrees with the
rotationally symmetric noninteracting limit (g ¼ 1) [21].
The bilateral symmetry of the plots reflects the two charge
components moving away from the injection point and
towards the diametrically opposite point. That these two
special points exist for any arbitrary closed shape suggests
that our result that fractionalization causes a distribution
that distinguishes two points is robust for any closed loop.
We contrast the behavior of the moments S and P in the

fractionalized state to the quantum and classical probabi-
listic situations. In the quantum state jQSi, a superposition
of CW- and CCW-moving electrons, quantum averages of
operators that are linear in the current mimic charge frac-

tionalization while higher moments (for example, hB̂2
zi)

of linear operators do not. Thus, S ¼ hB̂2
zi is isotropic but

P ¼ h@tB̂zi2 shows an anisotropic profile similar to that of
Fig. 2(b). For the classical situation described by the
density matrix M�, the moments are evaluated by sepa-

rately considering CWand CCWelectrons and adding their
appropriately weighted contributions. Thus, both moments
yield isotropic profiles. As summarized in Table I, the two
measurements therefore can distinguish between the three
possible scenarios.
In addition to the differences mentioned here, Ref. [5]

distinguishes true fractionalization from other situations by
the profound observation that charge fluctuations are in
fact a feature of the many-body ground state and the
background of particle-hole excitations while the fraction-
alized electron is itself ‘sharp.’ Translated to our setting,
we expect fluctuations in the magnetic field to be induced
even by the quiescent TLL ring (having no extra tunneled
electron) and identical to those induced by the fractional-
ized state jFi.
Thus far, we have described the injection localized

electron wave packet as a superposition of plasmon-like
modes described by Eq. (1). Due to coupling to the envi-
ronment [22–24] and quasiparticle interactions due to
anharmonic effects [15], these modes have a finite lifetime,

FIG. 2 (color online). Polar plots of (a) Sðr; �Þ ¼ hB2
zðtÞi and

(b) Pðr; �Þ ¼ h@tBzðtÞi2 at r ¼ 2R for values of the Luttinger
parameter g ¼ 1:0, 0.8, 0.6, 0.4, 0.2 (from outermost and most
isotropic to the innermost) as a function of �. Bar graphs of the
spectral weight of the maps (c) S and (d) P showing the even
Fourier coefficients as defined in Eq. (5), i.e., the height of
columns for m ¼ 0, 1, 2 correspond to the zeroth, cos2�, and
cos4� terms, respectively (the zeroth and nonzeroth coefficients
are shown on a different scale). With increasing fractionalization
(decreasing g), spectral weight is transferred to the nonzeroth
coefficients reflecting increasing anisotropy.

TABLE I. Results of various measurements exemplifying how
fractionalization (jFi) in a TLL can be differentiated from the
quantum (jQSi) and classical scenarios (M�) considered in the

text. Time-averaged quantities S and P can display isotropic (I)
or anisotropic (AI) distributions. Persistent current measure-
ments can yield nonvariable (NV) or variable (V) outcomes
for repeated measurements.

jFi jQSi M�

Sðr; �Þ ¼ hB̂2
zi AI I I

Pðr; �Þ ¼ h@tB̂zi2 AI AI I

Persistent Current NV V V

PRL 110, 026402 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

11 JANUARY 2013

026402-3



giving rise to a characteristic decoherence time �d within
which measurements need to be performed. However, for
time scales longer than �d, no plasmons are excited and
tunneled electrons need purely be described by the excess
electron number, N ¼ P

rnr, and the persistent current due
to the number imbalance between CCW- and CW-moving
electrons, J ¼ P

rrnr, where we define nr ¼ r�=�0 þR
dx�r. The optimal values of these ‘topological’ quanti-

ties N and J can be tuned by the application of a gate
potential � and external flux �, and can be determined by
minimizing the energy functional derived from Eq. (1) [25]

HNJ ¼ �@u

4�R

�
1

g
N2 þ g

�
J þ 2�

�0

�
2
�
��N: (6)

The regions of different optimal N and J values can be
charted by Coulomb blockade measurements wherein con-
ductance peaks track electron occupation numbers on the
ring. We show the boundaries for these regions in (dimen-
sionless) �-� parameter space in Fig. 3. Interactions
render these regions to be generically hexagonal, charac-
terized by horizontal sides of length 1� g2. Thus, the
geometry of this diagram is an easily accessible, alternate
means of extracting g, the Luttinger parameter.

A highlight of this slow-time regime is that it offers
another route to distinguishing the fractionalized state
jFi by way of persistent current analysis. Ultimately this
state is associated with a CW electron and hence has the
fixed current value J ¼ þ1 while the quantum and classi-
cal states characterized by jQSi and M� involve CW and

CCW electrons, thus showing values J ¼ �1 which vary
between measurements. Thus, as summarized in Table I,
the anisotropy in moment S and nonvariability in persistent
current distinguish the fractionalized state from the quan-
tum and classical scenarios (though the latter is not a
smoking gun test) while anisotropy in the moment P dis-
tinguishes the classical scenario.

Finally, turning to actual experiments, the ring geometry
can be achieved in the same fashion as in situations that
have hitherto measured persistent currents [26], Aharonov-
Bohm oscillations, or ring-based Kondo physics [27]. To
provide relevant physical estimates, for radius R � 1 �m
and a typical circulating frequency ! � 1011 Hz, we
have ð�0e!=2RÞ2�ð0:1milligaussÞ2 and ð�0e!

2=2RÞ2 �
ð80 T= secÞ2. An important requirement is that the injec-
tion of an electron must be made on a time scale �T � 1=!
in order for there to be a ‘clean’ injection of the electron.
For the ring, we have �T ¼ RTC where RT is the tunnel
junction resistance and C (� 	0R� 10�17 F) is the ring
capacitance. This gives the requirement that RT � 1 M�.
On the other hand, the Coulomb blockade limit holds
only if RT 
 h

e2
¼ 26 k�. Thus, we need RT � 100 k�.

Another consideration is that interaction effects at the
tunneling point restrict the energy window in which our
results hold [22]. The role of the electron’s spin can also
come into play and can be analyzed by a simple general-
ization of our results.
In conclusion, we have presented an alternative to the

quantum wire based electron-in electron-out paradigm for
charge fractionalization in the arena of weak measure-
ments in mesoscopic rings. Our envisioned setup discerns
subtle attributes that distinguish fractionalization from
quantum and classical probabilistic scenarios and is within
the reach of current nanotechnology.
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