
Surface Sulci in Squeezed Soft Solids

T. Tallinen,1,2 J. S. Biggins,1 and L. Mahadevan1,3,*
1School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA

2Department of Physics, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
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The squeezing of soft solids, the constrained growth of biological tissues, and the swelling of soft

elastic solids such as gels can generate large compressive stresses at their surfaces. This causes the

otherwise smooth surface of such a solid to become unstable when its stress exceeds a critical value.

Previous analyses of the surface instability have assumed two-dimensional plane-strain conditions, but in

experiments isotropic stresses often lead to complex three-dimensional sulcification patterns. Here we

show how such diverse morphologies arise by numerically modeling the lateral compression of a rigidly

clamped elastic layer. For incompressible solids, close to the instability threshold, sulci appear as I-shaped

lines aligned orthogonally with their neighbors; at higher compressions they are Y-shaped and prefer a

hexagonal arrangement. In contrast, highly compressible solids when squeezed show only one sulcified

phase characterized by a hexagonal sulcus network.
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Complex patterns often arise from simple causes, in
such instances as the fractal structures in physical aggre-
gation phenomena [1] or the labyrinthine structures, spots,
and stripes in chemical systems [2]. In purely mechanical
systems, there are two basic instabilities associated with
the buckling of a slender filament or sheet [3,4] and the
cracking of a bulk solid [5,6]. The first instability arises
because of a competition between compression and bend-
ing and is embodied in the ratio of two length scales, while
the second arises because of a competition between bulk
and surface effects and embodied in the ratio of two energy
scales. Here we show that an even simpler system—a thick
isotropic, homogeneous elastic layer which is subject to
planar compression and whose top surface is free—is
susceptible to the formation of various sulcal patterns
(cusped folds) as a function of the applied compressive
strain. This process is based on a surface instability with no
length scale, in sharp contrast to the thin film based pattern
formation [7] where the film thickness is the intrinsic
length scale.

The elastic instability of a compressed surface was first
studied by Biot [8] who showed that a half-space of in-
compressible neo-Hookean material becomes unstable to
any smooth perturbation when the surface stretch ratios �x

and �y (defined so that an uncompressed surface has �x ¼
�y ¼ 1) reach a critical value �x

ffiffiffiffiffiffi

�y

p � 0:544. More recent

studies have found that a subcritical instability in the form

of a sulcus is energetically favorable when �x

ffiffiffiffiffiffi

�y

p

& 0:647
[9], i.e., a nonlinearly unstable sulcified state with no
nucleation threshold can exist at lower compression than
predicted by Biot’s linear analysis. Apart from some early
and preliminary studies in gels [10,11], theoretical and
numerical studies of sulcification [9,12–16] assume two-
dimensional plane-strain conditions, and hence exclude

all realistic sulcal morphologies that involve three-
dimensional deformations seen in most physical experi-
ments [17,18]. These three-dimensional morphologies are
also seen in biological tissues, including particularly
prominent sulci in the primate brain [19], but also in
tumors [12] and other organs, where there is evidence of
mechanical forces driving folding [20]. In addition to being
a new paradigm for mechanical pattern formation, this
system also serves as a model for unusual thermodynam-
ical phase transitions without a barrier [9], classical nu-
cleation [21], interface instabilities, etc.
Experimental observations of sulcal patterns can be

realized by isotropic compression induced, for example,
by swelling gels [17,18,22] and typically lead to three-
dimensional patterns that are hard to control. Numerical
simulations provide means for controlled studies, but simu-
lating sulcification in three dimensions is challenging as it
involves finite deformations, tracking the free boundaries
of the unknown sulci, and accounting for self-contact of the
free surface. To overcome these difficulties, we use a finite
element method to approximate the solid with a dense
rectangular mesh of tetrahedrons [23], based on a discre-
tized finite strain elasticity theory with a neo-Hookean
energy density

W ¼ �

2
½TrðFFTÞJ�2=3 � 3� þ KðJ � logJ � 1Þ; (1)

where F is the deformation gradient, J ¼ detðFÞ, and �
and K are the shear and bulk modulus, respectively. To
relax the integrated energy density (1) towards minima, we
use damped Newtonian dynamics of the nodal degrees of
freedom. Self-avoidance is implemented by short range
repulsive contacts between the edges and faces that make
up the surface. The numerical model is well suited for
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sulcification studies as Newtonian dynamics naturally
allows the system to change rapidly when there are large
configuration changes while the quadratic elastic potentials
allow for stable integration of the equations of motion with
a fixed time step. To confirm that our results are indepen-
dent of the mesh geometry, we also used a hexagonal prism
mesh and checked that our results are robust [23].

To study sulcification under isotropic compression, we
simulate a layer with thickness h in the stress-free state,
and lateral dimensions corresponding to a square of side
L ¼ 10h; the lattice has �320� 320� 40 nodes with
� 2� 107 elements. The base of the layer is clamped
and periodic boundary conditions are applied along the
lateral edges to prevent edge effects from constraining
sulcal morphologies. Since many soft materials are ap-
proximately incompressible, we assume that the bulk
modulus K ¼ 30�. Our simulations start from an isotropic
compressed reference state with stretch � ¼ �x ¼ �y ¼
0:54 in both planar directions, corresponding to strain � ¼
�� 1 ¼ �0:46 and �x

ffiffiffiffiffiffi

�y

p ¼ 0:40 well beyond the Biot

point (�x

ffiffiffiffiffiffi

�y

p � 0:544 [8]) and T point (�x

ffiffiffiffiffiffi

�y

p � 0:647
[9]). To trigger sulcification the featureless flat surface is
perturbed by small random vertical displacements of the
nodes [maximum amplitude 10�3 � ðlattice constantÞ],
after which the system is allowed to relax to a sulcified
state while keeping the strain constant. In Fig. 1(a) we see
the appearance of a densely sulcified state characterized by
isolated Y-shaped triple junctions of sulci lying on an
approximately triangular lattice. The threefold symmetry
of the junctions is consistent with their angle being
� 120�; occasionally some triple junctions share an arm
with their neighbor, although usually they are isolated.
Once the layer is fully relaxed in its equibiaxially com-
pressed state, we quasistatically decompress it while

preserving the lateral stress isotropy (see movie [23]).
Decompression of the layer transforms the Y-shaped
sulci, one by one, to I-shaped sulci. In Fig. 1(b) we show
the layer at � ¼ 0:61 where Y’s and I’s coexist. At � ¼
0:67 [Fig. 1(c)], at the Biot point, all Y’s have transformed
to I’s, but their number remains approximately constant. As
the layer is allowed to relax still more, the I’s shorten and
eventually unfold at � � 0:73 as the T point is approached
[Fig. 1(d)]. We use unloading rather than loading to probe
the patterns to circumvent that the absence of nonsmooth
perturbations prevents sulcus formation during loading
until the Biot point [8] is reached, in contrast with any
physical experiment where the T point determines sulcus
formation [9].
To understand the patterns qualitatively, we note that the

formation of a sulcus relaxes stress primarily in the direc-
tion perpendicular to it (similar to a crack), so that it is
unfavorable for adjacent sulci to be parallel. The arrange-
ment of the I-shaped sulci in a square lattice with alternat-
ing orientations is a natural solution. Indeed, in Fig. 1 we
see such a pattern although the system may get trapped in
metastable states that break this order at times. For
Y-shaped sulci, on the other hand, the simplest plane-
filling symmetric pattern is based on a hexagonal lattice,
although again we see imperfections at high compression
in our unfolding simulations; we note that these symme-
tries are not those of the underlying lattice [23].
Perfectly ordered sulcus patterns can be constructed

numerically by using a ‘‘mold’’ to imprint the desired
pattern onto a precompressed layer. Given the hysteretic
nature of the sulcification transition [9], when the mold is
removed, the pattern persists. In Fig. 2(a), we show the
square I pattern in a domain with periodic boundary con-
ditions, simulating a unit cell with two horizontal and two

FIG. 1 (color online). Simulated unfolding of a compressed and sulcified solid layer starts from a state with a transversely isotropic
stretch � ¼ 0:54 (a). The layer is then decompressed quasistatically and intermediate states are shown for � ¼ 0:61 (b), � ¼ 0:67
(c) corresponding to the Biot threshold, and � ¼ 0:72 (d) just before unsulcification. Coloring indicates the largest compressive stress
at the surface. Experimental sulcal patterns are shown in a swelling gel in (e) and (f), courtesy of J. Yoon and R. C. Hayward.
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vertical I’s on a lattice of dimensions �125� 125� 40
with a simulation domain of unknown side length as. For
each simulation we fix � and vary as to find the energy
minimum. In Fig. 2(b), we show the hexagonal Y pattern
and again find the optimal hexagonal spacing ah for a given
fixed compression. The surface profile of an I sulcus shown
in Fig. 2(a) reveals that it is symmetric while the surface
profile of a Y sulcus [Fig. 2(b)] reveals that it has a sharp
asymmetric center. A comparison of the energies of these
patterns with those of freely relaxed layers in Fig. 2(c)
shows that the perfectly ordered patterns have lower en-
ergy. Furthermore, we find that I patterns are stable for
� * 0:61 and Y patterns are stable for � & 0:63, while in
the narrow regime 0:61 � � � 0:63 their energies are
nearly equal, and explains the coexistence of Y’s and I’s
seen in Fig. 1(b). The optimal spacing of these structures is
given by the relations as � 3h and ah � 2h but it increases
weakly with compression in both cases. The square and

hexagonal symmetries of the sulcus patterns are similar to
those seen in other pattern forming systems such as fluid
convection [24] and elastic fracture [25]; however, there
are fundamental differences from a mechanistic perspec-
tive, and we will not pursue the mathematical analogies
further here.
Sulcification is an energetic consequence of the ex-

change of stability between a uniformly deformed state
and a set of localized states. To quantify this, in Figs. 3(a)
and 3(b)we show the depth-averaged energy distributions
of the I and Y patterns, obtained by integrating energy
density over the thickness of the layer in material coordi-
nates. They reveal that Y’s span triangular areas on the
surface, whereas I’s span elliptical areas. Although sulci-
fied states are favored in terms of total energy, between
sulci the energy density increases with respect to the
reference state. Similarly, energy distribution in the thick-
ness direction [Fig. 3(c)] shows that, while relaxing com-
pression relieves energy near the surface, the material at
some depth gains energy as it conforms to the buckling
surface.
Having considered isotropic compression, we now look

at anisotropic compression, characterized by the strain
ratio �y=�x < 1 (�x ¼ �x � 1, �y ¼ �y � 1). We perform

these simulations by starting with a compressed reference
state and then unloading the layer quasistatically keeping
�y=�x constant. The lattice size and simulation domain are

as in the simulation of Fig. 1. In the perfectly anisotropic

FIG. 2 (color online). A square lattice (a) of I-shaped sulci
with alternating orientation minimizes energy near the sulcifi-
cation threshold, whereas at higher compression hexagonal
arrangement (b) of Y-shaped sulci is favorable. Surface profiles
along the lines indicated in (a) and (b) are shown below the
patterns. In (c) the energies of these patterns are compared to
that of a freely relaxing layer of Fig. 1 as a function of stretch
� ¼ �x ¼ �y. All energies are normalized by the energy Uref of

an unsulcified reference state. Numbers below the points indicate
the optimal spacing of the square (blue) or hexagonal (red)
lattice.

FIG. 3 (color online). Depth averaged energy distribution for
(a) an I pattern and (b) a Y pattern. (c) Energy density as a
function of distance from the base in material coordinates.
Energy densities are normalized by the energy density Uref of
the unsulcified reference state.
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case (�y=�x ¼ 0, see Fig. 4), as expected, we see stripes of

sulci in the direction perpendicular to the direction of
compression. By including compression in the y direction
we find that when �y=�x � 0:5 stripes begin to break up.

When the strains are set almost equal (�y=�x ¼ 0:85

in Fig. 4), Y-shaped sulci appear, but anisotropy is still
apparent from the pattern. As in the isotropic case
(�y=�x ¼ 1), Y’s transform to I’s with decompression, but

now all the I’s are oriented perpendicular to the direction of
highest compression. We observe an almost identical

unfolding threshold �x

ffiffiffiffiffiffi

�y

p � 0:62 for all �y=�x; this devi-

ates from previous numerical results for the plane strain

case [9] where sulci unfold at �x

ffiffiffiffiffiffi

�y

p � 0:647 because of

the weak dependence of the critical strain on the finite
mesh size; here sulci vanish when their size become com-
parable to the mesh spacing. The near threshold behavior
of these sulci calls for a more careful analysis, but the
transversely isotropic and plane-strain cases have similar
hysteresis effects associated with the presence of two
critical points [9].

Having characterized the patterns on the surface of
incompressible hyperelastic solids, we turn briefly to con-
sider the other limit of soft surfaces of highly compressible
materials, such as solid foams. Here, the bulk modulus
K �� enters as a relevant parameter, and the Poisson
effect that couples the transverse directions is weaker
than in the nearly incompressible materials considered
above. When such a solid is isotropically compressed, we
find that sulci form a connected hexagonal network,

typically with some imperfections, as shown in Fig. 5(a).
For K & 2� the hexagons persist all the way to the T point
upon unloading, which itself shifts to higher strain with
decreasing K. These findings can be summarized in a
simple phase diagram [Fig. 5(b)] of sulcus morphologies
as a function of bulk modulus and compression. We note
that the phase boundaries in the diagram are only qualita-
tive guides since the simulations indicate regions of coex-
istence of the different morphological states.
Our simulated patterns are able to capture the range of

experimental observations of sulcification in swollen gel
layers [17] shown in Figs. 1(e) and 1(f). Indeed, prior
observations show the domains of ordered I patterns and
Y-I mixtures, reminiscent of our freely relaxed layers,
although the transition from I’s to Y’s has not been pre-
viously attributed directly to increasing compression.
Furthermore, the spacing between sulci in our simulations
agrees well with the experimentally observed spacing [17]
with a similar weak strain dependence as observed for
uniaxially compressed sulci [26]. Sulcus patterns in com-
pressible hydrogels (which are poroelastic and thus
compressible over long time scales) have been observed
to relax with time into honeycomb structures [10,11] that
are similar to our compressible hexagon patterns. In a
biological setting, several organs, including the cerebral
cortex and cerebellum in the brain [19], have sulcified
surfaces, with the cerebellum showing striped patterns
while the cortex showing triple junctions that are similar
to those seen in our simulations. Recent experiments [20]
show the presence of residual strains in these tissues,
consistent with the hypothesis that sulcification might be
a simple consequence of relative growth. From a techno-
logical perspective, since sulci form so easily on the sur-
face of soft solids, they should be easy to manipulate as
well. Efforts to design and control smart surfaces using
temperature-responsive gels [27], voltage-responsive elas-
tomers [28], and mechanical strain are just beginning, and
point the way to functional patterning via sulcification.

FIG. 4 (color online). Layers with various anisotropic strain
ratios �y=�x (rows) are shown at modest compression (�x

ffiffiffiffiffiffi

�y

p ¼
0:54, left column) and at high compression (�x

ffiffiffiffiffiffi

�y

p ¼ 0:4, right
column).

FIG. 5. (a) A connected sulcus network in a simulated highly
compressible solid (K ¼ 2�, isotropic � ¼ 0:54). (b) A sche-
matic diagram summarizing morphologies as a function of bulk
modulus and isotropic compression. Sulcification threshold is
sketched according to simulated points (crosses).
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