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The neutron-rich unbound 7He nucleus has been the subject of many experimental investigations. While

the ground-state 3=2� resonance is well established, there is a controversy concerning the excited 1=2�

resonance reported in some experiments as low lying and narrow (ER � 1 MeV, � � 1 MeV) while in

others as very broad and located at a higher energy. This issue cannot be addressed by ab initio theoretical

calculations based on traditional bound-state methods. We introduce a new unified approach to nuclear

bound and continuum states based on the coupling of the no-core shell model, a bound-state technique,

with the no-core shell model combined with the resonating-group method, a nuclear scattering technique.

Our calculations describe the ground-state resonance in agreement with experiment and, at the same time,

predict a broad 1=2� resonance above 2 MeV.
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Exotic nuclei are the gateway to new manifestations of
nuclear matter at the boundaries of stability, where the
neutron-to-proton ratios are larger or smaller than those
naturally occurring on Earth. In these remote regions of the
nuclear landscape, our ability to understand nuclear prop-
erties in terms of the underlying forces is put to the test.
Particularly interesting in this respect are systems acces-
sible to many-body ab initio calculations, such as the
neutron-rich isotopes of helium and, among them, 7He.
Its ground state (g.s.), characterized by spin, parity and
isospin J�T ¼ 3=2�3=2, lies at 0.430(3) MeV [1,2] above
the threshold of a neutron (n) plus the 6He Borromean halo,
a loosely-bound state of two neutrons and an � (4He)
particle. Experimentally, excited states of 7He are popu-
lated by means of transfer reactions that usually lead to a
continuous three-body background of 6He plus n (coming
from the 7He decay) plus a third outgoing particle. The
presence of such a background is a major stumbling block
and has left open questions about the low-lying spectrum
of this nucleus. While there is a general consensus on the
existence of a 5=2� resonance centered at 3.35 MeV, which
mainly decays to �þ 3n [3], the existence and position of
a low-lying 1=2� state are still under discussion. In par-
ticular, many experiments [4–8] (most of which are based
on one-neutron knockout reactions of a 8He beam on a
carbon target) advocate the presence of a narrow (� �
1 MeV) 1=2� state at about 1 MeV while several others
[9–14] do not confirm it. The occurrence of a low-lying
1=2� state has also been excluded by a study on the
isobaric analog states of 7He in 7Li [15]. According to
this work, a broad 1=2� resonance at �3:5 MeV with a
width of �� 10 MeV fits data the best. Neutron-pickup
and proton-removal reactions [11,12] suggest instead a
1=2� resonance at about 3 MeV with a width of
� � 2 MeV.

From a theoretical standpoint, addressing the contro-
versy surrounding the 1=2� resonance of 7He requires a
unified description of structural and reaction properties that
cannot be realized within traditional ab initio bound-state
approaches such as the Green’s function Monte Carlo
(GFMC) method [16], the no-core shell model (NCSM)
[17], or the coupled cluster method [18–20]. The complex
coupled cluster method was recently applied to He iso-
topes, but only the g.s. of 7He was investigated [21]. In this
Letter, we address the low-lying resonances of 7He within
the no-core shell model with continuum (NCSMC), a new
unified approach to nuclear bound and continuum states
based on the coupling of the NCSM [17] with the no-core
shell model combined with the resonating-group method
(NCSM/RGM) [22–27]. The NCSM is a bound-state tech-
nique, where one performs large-scale expansions of the
A-body Schrödinger wave function in terms of a complete
set of harmonic oscillator (HO) basis states. The A-body
square-integrable eigenstates jA�J�Ti are obtained by
diagonalizing the Hamiltonian matrix. The NCSM/RGM
allows one to go beyond bound states and treat the con-
tinuum of resonances, scattering states, and reactions by
expanding the A-body wave function over an (A� a, a)
binary-cluster basis in the spirit of the RGM,

j�J�T
�r i ¼ ½ðjA� a�1I

�1

1 T1ija�2I
�2

2 T2iÞðsTÞY‘ðr̂A�a;aÞ�ðJ�TÞ

� �ðr� rA�a;aÞ
rrA�a;a

; (1)

in which each cluster of nucleons is described within the
NCSM. Here, the unknown relative motion wave functions
��ðrÞ between pairs of clusters, labeled by the quantum
numbers � ¼ fA� a�1I

�1

1 T1;a�2I
�2

2 T2; s‘g, are obtained
by solving a set of nonlocal integral-differential coupled-
channel equations [23]. Both the NCSM and NCSM/RGM
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preserve translational invariance and the Pauli principle. In

the latter approach, the operator Â� ¼ ½ðA� aÞ!a!=
A!�1=2PPð�ÞpP, where P are permutations of nucleons
across the two clusters and p the number of interchanges
characterizing them, ensures full antisymmetrization. The
NCSMC ansatz for the wave function includes both
A-body square-integrable and (A� a, a) binary-cluster
continuous basis states, according to

j�J�T
A i¼X

�

c�jA�J�Tiþ
X

�

Z
drr2

��ðrÞ
r

Â�j�J�T
�r i: (2)

The NCSM sector of the basis (eigenstates jA�J�Ti) pro-
vides an effective description of the short- to medium-
range A-body structure, while the NCSM/RGM cluster
states make the theory able to handle the scattering physics
of the system. The discrete, c�, and the continuous, ��ðrÞ,
unknowns of the NCSMC wave functions are obtained as
solutions of the following coupled equations:

HNCSM
�h

�h �H

 !
c
�

� �

¼ E
1 �g
�g 1

� �
c
�

� �

: (3)

Here, ðHNCSMÞ��0 ¼ E����0 is the diagonal matrix

of the NCSM energy eigenvalues; �H ��0 ¼
ðN �1=2HN �1=2Þ��0 and �� ¼ ðN 1=2�Þ� are, respec-
tively, the Hamiltonian kernel and relative wave
functions when working with orthogonalized NCSM/
RGM cluster channel states [23] [obtained from

N �0�ðr0; rÞ ¼ h�J�T
�0r0 jÂ�0Â�j�J�T

�r i and H �0�ðr0; rÞ ¼
h�J�T

�0r0 jÂ�0ĤÂ�j�J�T
�r i]; and �g��ðrÞ and �h��ðrÞ are the

overlap and Hamiltonian form factors describing the
coupling between the two sectors of the basis, respectively

proportional to thematrix elements hA�J�TjÂ�j�J�T
�r i and

hA�J�TjĤÂ�j�J�T
�r i. The coupled-channel equations (3)

are solved by applying themicroscopicR-matrixmethod on
a Lagrange mesh [28]. Further details will be given else-
where [29].

In the following, we proceed to discuss the results
obtained by highlighting each step of the calculation and
emphasizing new achievements made possible by the
NCSMC. While a complete ab initio calculation would,
in principle, require us to work with a nuclear Hamiltonian
containing both two- (NN) and three-nucleon (NNN) force
components, our main concern is first to develop a theory
that can address open quantum systems such as 7He.
Therefore, we adopt the similarity-renormalization-group
(SRG) evolved [30–33] chiral next-to-next-to-next-to-
leading order (N3LO) NN potential of Refs. [34,35] that
provides an accurate description of the NN system and
omit, for the time being, both initial and SRG-induced
NNN forces. Although with such a procedure results
depend on the SRG parameter �, we note that, for � ¼
2:02 fm�1, one obtains realistic binding energies for the
lightest nuclei, e.g., 4He and, especially important for the

present investigation, 6He (see Table I). Consequently, this
choice of NN potential allows us to perform qualitatively
and quantitatively meaningful calculations for 7He that can
be compared to experiment.
We begin by presenting NCSM calculations for 6He and

7He that will serve as input for the subsequent investiga-
tions of 7He. These variational calculations, depending on
the number of excitations Nmax and frequency� of the HO
basis, converge rapidly and can be easily extrapolated. At
Nmax ¼ 12 (our 6;7He limit for technical reasons), the
dependence of the 6He g.s. energy on the HO frequency
is flat in the range of @�� 16–19 MeV. We choose the
lower value @� ¼ 16 MeV for our subsequent calcula-
tions. Extrapolated g.s. energies with their error estimates
and the Nmax ¼ 12 results are given in Table I, and calcu-
lated 6He excitation energies are shown in Fig. 1. The 6He
is weakly bound with all excited states unbound. Except for
the lowest 2þ state, all 6He excited states are either broad
resonances or states in the continuum. We observe a good
stability of the 2þ1 state with respect to the basis size of our
NCSM calculations. The higher excited states, however,
drop in energy with increasing Nmax, with the most dra-
matic example being the multi-particle-hole 0þ3 state.

For 7He, the NCSM predicts the g.s. to be unbound, in
agreement with experiment. However, the position of the
resonance with respect to the 6Heþ n threshold appears to
be overestimated. Obviously, it is not clear that the ad hoc

TABLE I. Ground-state energies of 4;6;7He in MeV. An expo-
nential fit was employed for the extrapolations.

Eg:s: [MeV] 4He 6He 7He

NCSM Nmax ¼ 12 �28:05 �28:63 �27:33
NCSM extrapolation �28:22ð1Þ �29:25ð15Þ �28:27ð25Þ
Experiment �28:30 �29:27 �28:84
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FIG. 1 (color online). Dependence of 6He excitation energies
on the size of the HO basis Nmax@�.
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exponential extrapolation is valid for unbound states. In
addition, no information on the width of the resonance can
be obtained from this calculation performed in a square-
integrable HO basis. We can, however, study the structure
of the 7He NCSM eigenstates by calculating their overlaps
(related, as discussed earlier, to �g��) with

6Heþ n cluster
states and the corresponding spectroscopic factors summa-
rized in Table II. Overall, we find a very good agreement
with the variational Monte Carlo (VMC) and GFMC
results as well as with the latest experimental value for
the g.s. [2]. Interesting to notice is the about equal spread of
1=2� between cluster states with the 6He in the 0þ and 2þ2
states. We stress that, in the present calculations, the over-
lap functions and spectroscopic factors are not the final
products to be compared to experiment but are rather
inputs to more sophisticated NCSMC calculations.

Next, we present NCSMC 7He calculations obtained by
solving Eq. (3) in a model space containing the six lowest
negative-parity (3=2�1 , 1=2�, 5=2�, 3=2�2 , 3=2�3 ,
3=2�4 ) and four lowest positive-parity (1=2þ, 5=2þ1 ,
3=2þ, 5=2þ2 ) NCSM eigenstates of 7He as well as nþ
6He binary-cluster states including up to the three lowest
eigenstates of 6He, i.e., 0þ, 2þ1 , and 2þ2 (see Fig. 1). These

results are also compared to those obtained by keeping
only the binary-cluster part of such a model space [corre-
sponding to the second term in the right-hand side of
Eq. (2)], i.e., by solving the coupled-channel NCSM/

RGM equations �H� ¼ E�. First, in Fig. 2, we study the
dependence of the 3=2� g.s. diagonal phase shifts on the
number of 6He eigenstates included in the NCSM/RGM
(blue lines) and NCSMC (red lines) calculations. The
NCSM/RGM calculation with the 6He target restricted to
its g.s. does not produce a 7He 3=2� resonance (the phase
shift does not reach 90 degrees). A 2P3=2 resonance does

appear once the 2þ1 state of 6He is coupled, and the reso-

nance position further moves to lower energy with the
inclusion of the second 2þ state of 6He. On the contrary,

the 2P3=2 resonance is already present in the NCSMC

calculation with only the g.s. of 6He. In fact, this
NCSMC model space is already enough to obtain the
7He 3=2� g.s. resonance at about 1 MeV above threshold,
which is lower than the NCSM/RGM prediction when
three 6He states are included. Adding the 2þ1 state of 6He
generates a modest shift of the resonance to a still lower
energy, while the second 2þ state of 6He has no significant
influence. We further observe that the resonance position in
the NCSMC calculation is lower than the NCSM/RGM one
by about 0.7 MeV. This difference is due to the additional
correlations brought by the 7He eigenstates that are
coupled to the nþ 6He binary-cluster states in the
NCSMC and that compensate for higher excited states of
the 6He target omitted in the NCSM/RGM sector of the
basis. These include both positive-parity states, some of
which are shown in Fig. 1, and negative-parity excitations,
e.g., the 1� soft dipole excitation, etc. While NCSM/RGM
calculations with a large number of cluster excited states
can become prohibitively expensive, the coupling of a few
square-integrable NCSM eigenstates of the composite sys-
tem is straightforward.
Panels (a) and (b) of Fig. 3 show the five P-wave and

2S1=2 nþ 6He phase shifts calculated within the NCSM/

RGM and NCSMC approaches, respectively. The adopted
model spaces are the same as described above. As expected
from a variational calculation, the introduction of the addi-
tional A-body correlations carried by the jA�J�Ti basis
states [i.e., going from (a) to (b)] lowers the centroids of all
7He resonances. In particular, the 7He 3=2� g.s. and 5=2�
excited state are pushed toward the 6Heþ n threshold,
closer to their respective experimental positions.
The experimental values for the centroids of the accepted

7He 3=2� and 5=2� resonances and the possible 1=2�
states are shown in Table III, together with our Nmax ¼ 12
calculations. Within both NCSM/RGM and NCSMC,

TABLE II. NCSM spectroscopic factors compared to Cohen-
Kurath (CK) [36] and VMC-GFMC [16,37,38] calculations and
to experiment. The CK values should still be multiplied by
A=ðA� 1Þ to correct for the center-of-mass motion.

7He J� 6He� nðljÞ NCSM CK VMC GFMC Experiment

3=2�1 0þ � p 3
2 0.56 0.59 0.53 0.565 0.512(18) [2]

0.64(9) [39]

0.37(7) [11]

3=2�1 2þ1 � p 1
2 0.001 0.06 0.006

3=2�1 2þ1 � p 3
2 1.97 1.15 2.02

3=2�1 2þ2 � p 1
2 0.12 0.09

3=2�1 2þ2 � p 3
2 0.42 0.30

1=2� 0þ � p 1
2 0.94 0.69 0.91

1=2� 2þ1 � p 3
2 0.34 0.60 0.26

1=2� 2þ2 � p 3
2 0.93
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FIG. 2 (color online). Dependence of the NCSM/RGM (blue
lines) and NCSMC (red lines) 6Heþ n diagonal phase shifts of
the 7He 3=2� g.s. on the number of 6He states included in the
binary-cluster basis. The short-dashed, long-dashed, and solid
curves correspond to calculations with the 6He, 0þ g.s. only; 0þ,
2þ states; and 0þ, 2þ, 2þ states, respectively.
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the resonance centroids ER are obtained as the values
of the kinetic energy in the center of mass Ekin for which
the first derivative of the phase shifts is maximal [41].
The resonance widths are then computed from the phase
shifts according to (see, e.g., Ref. [42])

� ¼ 2

d�ðEkinÞ=dEkin

��������Ekin¼ER

: (4)

An alternative, less general, choice for the resonance energy
ER could be the kinetic energy corresponding to a phase
shift of �=2 (thin dashed lines in Fig. 3). At the same time,
while Eq. (4) is safely applicable to sharp resonances, broad
resonances would require an analysis of the scattering
matrix in the complex plane. As we are more interested in

a qualitative discussion of the results, herewe use the above
extraction procedure for broad resonances as well. The two
alternative ways of choosing ER lead to basically identical
results for the sharp 3=2� resonance; however, the same is
not true of the broader 5=2� and the very broad 1=2�
resonances.
Compared to experiment, NCSMC resonance positions

and widths are slightly larger in the case of the 3=2� g.s.
whereas they are lower for the 5=2�, although our deter-
mination of the width should be taken with some caution in
this case. As for the 1=2� resonance, the experimental
situation is not clear, as discussed in the introduction and
documented in Table III. While the centroid energies of
Refs. [11,12,15] are comparable, the widths are very differ-
ent. With the present determination of ER and �, the
NCSMC results are in fair agreement with the neutron-
pickup and proton-removal reaction experiments [11,12]
and definitely do not support the hypothesis of a low-lying
(ER � 1 MeV) narrow (� � 1 MeV) 1=2� resonance
[4–8]. In addition, our NCSMC calculations predict two
broad 6P3=2 resonances (dominated, respectively, by the

first and second 2þ states of 6He) at about 3.7 and 6.5 MeV
with widths of 2.8 and 4.3 MeV, respectively. The corre-
sponding eigenphase shifts do not reach �=2; see Fig. 3. In
experiment, there is a resonance of undetermined spin and
parity at 6.2(3) MeV with a width of 4(1) MeV [40].
Finally, we note that the NCSMC g.s. resonance energy,
0.71 MeV, is lower but compatible with the extrapolated
NCSM value of 0.98(29) MeV (see Tables I and III).
In summary, we introduced a new unified approach to

nuclear bound and continuum states based on the coupling
of the no-core shell model with the no-core shell model
combined with the resonating-group method and demon-
strated its potentials in calculations of 7He resonances. Our
results help discriminate among three contradictory
measurements concerning the nature of the 1=2�
resonance and, in particular, do not support the hypothesis
of a low-lying and narrow 1=2� resonance in 7He.
Computing support came in part from the LLNL institu-

tional Computing Grand Challenge Program. This work
was prepared in part by the LLNL under Contract No. DE-
AC52-07NA27344. Support from the U.S. DOE/SC/NP
(Work Proposal No. SCW1158) and the Natural Sciences
and Engineering Research Council of Canada (NSERC)
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FIG. 3 (color online). (a) NCSM/RGM and (b) NCSMC 6Heþ
n diagonal phase shifts (except 6P3=2, which are eigenphase

shifts) as a function of the kinetic energy in the center of
mass. The dashed vertical area centered at 0.43 MeV indicates
the experimental centroid and width of the 7He g.s. [1,2]. In all
calculations, the lowest three 6He states have been included in
the binary-cluster basis. See the text for further details.

TABLE III. Experimental and theoretical resonance centroids and widths in MeV for the 3=2� g.s. and the 5=2� and 1=2� excited
states of 7He. See the text for more details.

J�
Experiment NCSMC NCSM/RGM NCSM

ER � Reference ER � ER � ER

3=2� 0.430(3) 0.182(5) [2] 0.71 0.30 1.39 0.46 1.30

5=2� 3.35(10) 1.99(17) [40] 3.13 1.07 4.00 1.75 4.56

1=2� 3.03(10) 2 [11] 2.39 2.89 2.66 3.02 3.26

3.53 10 [15]

1.0(1) 0.75(8) [5]
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[25] P. Navrátil, R. Roth, and S. Quaglioni, Phys. Lett. B 704,
379 (2011).
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[27] P. Navrátil and S. Quaglioni, Phys. Rev. Lett. 108, 042503
(2012).

[28] M. Hesse, J.-M. Sparenberg, F. Van Raemdonck, and
D. Baye, Nucl. Phys. A640, 37 (1998); M. Hesse,
J. Roland, and D. Baye, Nucl. Phys. A709, 184
(2002).
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