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The form factors in the radiative decay of J=c to a scalar glueball are studied within quenched lattice

QCD on anisotropic lattices. The continuum extrapolation is carried out by using two different lattice

spacings. With the results of these form factors, the partial width of J=c radiatively decaying into the

pure gauge scalar glueball is predicted to be 0.35(8) keV, which corresponds to a branching ratio of

3:8ð9Þ � 10�3. By comparing with experiments, out results indicate that f0ð1710Þ has a larger overlap

with the pure gauge glueball than other related scalar mesons.
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The existence of glueballs predicted by QCD remains
obscure. For a scalar glueball there is some evidence of its
existence indicated by the fact that there are ten scalar
mesons, such as K�ð1430Þ, a0ð1450Þ and three isoscalars
f0ð1370Þ, f0ð1500Þ, and f0ð1710Þ. These mesons are close
in mass and can be sorted into a SUð3Þ flavor nonet plus a
glueball. Recent lattice studies predict that the lightest pure
gauge scalar glueball has a similar mass [1–3]. Since the
scalar glueball can mix with the nearby q �q mesons, the
three isoscalars can be the different admixtures of the pure
glueball G, the n �n meson, and s�s meson. So the key
problem is to identify which of the three isoscalars has a
dominant glueball component. For this purpose, different
mixing scenarios have been proposed by imposing differ-
ent mass ordering of G, n �n, and s�s along with the known
decay branching ratios of scalar mesons [4–11]. However,
the resultant mixing patterns are controversial, especially
for the status assignment of f0ð1500Þ and f0ð1710Þ.
Obviously, more theoretical information of the scalar glue-
ball is desired for the problem to be finally resolved.

It is well-known that gluons can be copiously produced
in J=c decays because of the annihilation of the heavy
quark pair. Among all the decays, the radiative decay is of
special importance. It is expected that the gluons produced
in J=c radiative decays dominantly form a glueball. If the
production rate of the scalar glueball in the radiative decay
can be reliably obtained from theoretical studies, it will
provide important information for identifying the possible
candidate for the scalar glueball by comparing the produc-
tion pattern of scalar mesons in these decay channels.

There have been several studies on this topic based on
the tree-level perturbative QCD approach and the disper-
sion relation method [12–16], but it is difficult to estimate
theoretical uncertainties in the used approximations. In
contrast, lattice QCD provides the rigorous method to
study the radiative decay from first principles. In this
Letter, as an exploratory study, we investigate the radiative
decay of J=c into a scalar glueball in quenched lattice
QCD.
Gauge configurations used in this Letter are generated

using the tadpole-improved gauge action [1] on anisotropic
lattices with the temporal lattice spacing much finer than
the spatial one, say, � ¼ as=at ¼ 5, where as and at are the
spatial and temporal lattice spacing, respectively. Each
configuration is separated by 500 heat-bath updating
sweeps to avoid the autocorrelation. The much finer lattice
in the temporal direction gives a higher resolution to
hadron correlation functions, such that masses of heavy
particles can be tackled on relatively coarse lattices. The
calculations are carried out on two anisotropic lattices,
namely L3 � T ¼ 83 � 96 and 123 � 144. The relevant
input parameters are listed in Table I, where as values
are determined from r�1

0 ¼ 410ð20Þ MeV. The spatial

extension of both lattices is �1:7 fm, whose finite volume
effect was found to be small and negligible for glueballs
[3]. On the other hand, this lattice size is large enough for
charmonium. For fermions we use the tadpole-improved
clover action for anisotropic lattices [17]. The parameters
in the action are tuned carefully by requiring that the
physical dispersion relations of vector and pseudoscalar
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mesons are correctly reproduced at each bare quark mass
[18]. The bare charm quark masses at different � are
determined by the physical mass of J=c , mJ=c ¼
3:097 GeV. The ground state masses of 1S and 1P char-
monia are also calculated with these two lattices (see Fig. 2
and Table II of Ref. [19] for the details) and the finite as
effects are found to be small.

To the lowest order in QED, the amplitude M for radia-
tive decay J=c ! �G is given by

Mr;r� ¼ ���ð ~q; r�ÞhGð ~pfÞjj�ð0ÞjJ=c ð ~pi; rÞi; (1)

where ~q ¼ ~pi � ~pf is the momentum of the real photon, r

and r� are the polarization indices of J=c and the photon,

respectively. �ð ~q; r�Þ is the polarization vector of the pho-

ton and j� is the electromagnetic current operator. The
hadronic matrix element appearing in the above equation
can be obtained directly from lattice QCD calculation of
corresponding three-point functions.

One of the key issues in our calculation is to construct
the interpolating field operator which couples dominantly
to the so-called pure gauge scalar glueball, which is defined
by using interpolating field operators built from the gauge
fields only. For this purpose, we adopt the variational
method along with the single-link and double-link smear-
ing schemes [2,3]. More specifically, since the irreducible
representation Aþþ

1 of lattice symmetry group O gives the

right quantum number JPC ¼ 0þþ in the continuum limit,
we construct an Aþþ

1 operator set f��;� ¼ 1; 2; . . . ; 24g
of 24 different gluonic operators. Through the Fourier
transformation,

��ð ~p; tÞ ¼
X
~x

��ð ~x; tÞe�i ~p� ~x; (2)

we obtain the operator set f��ð ~p; tÞ; � ¼ 1; 2; . . . ; 24g
which couples to an Aþþ

1 glueball state with the definite
momentum ~p. For each ~p, by solving the generalized
eigenvalue problem,

~CðtDÞvðRÞ ¼ e�tD ~mðtDÞ ~Cð0ÞvðRÞ; (3)

at tD ¼ 1, where ~CðtÞ is the correlation matrix of the
operator set,

~C��ðtÞ ¼ 1

Nt

X
�

h0j��ð ~p; tþ �Þ�y
�ð ~p; �Þj0i; (4)

we obtain an optimal combination of the set of operators,
�ð ~p; tÞ ¼ P

v���ð ~p; tÞ, which overlapsmost to the ground
state,

Cð ~p; tÞ ¼ 1

T

X
�

h�ð ~p; tþ �Þ�yð ~p; �Þi

� jh0j�ð ~p; 0ÞjSð ~pÞij2
2ESV3

e�ESt � e�ESt; (5)

where the normalization Cð ~p; 0Þ ¼ 1 is also used. This is
actually the case that CðtÞ can be well described by a single
exponential, CðtÞ ¼ We�Et, with W usually deviating from
one by few percents. Figure 1 shows the effective energy
plateaus of the Aþþ

1 glueball for typical momentum modes,
where one can see that the plateaus start even from t ¼ 1.
Glueballs are noisy objects and large statistics is usually

required. In this Letter, we generated 5000 configurations
for both lattice systems. In order to increase the statistics
additionally, for each configuration we calculate T charm

quark propagators SFð ~x; t; ~0; �Þ by setting a point source on
each time slice �, which permits us to average over the
temporal direction when calculating the three-point func-
tions. Therefore, the three-point functions we calculate in
this Letter are

TABLE I. The input parameters for the calculation. Values for
the coupling �, anisotropy �, the lattice spacing as, lattice size,
and the number of measurements are listed.

� � as (fm) Las (fm) L3 � T Nconf:

2.4 5 0.222(2) 1.78 83 � 96 5000

2.8 5 0.138(1) 1.66 123 � 144 5000
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FIG. 1 (color online). The effective energy plot for the Aþþ
1

glueball with different spatial momenta. From top to bottom
are the plateaus for momentum modes, ~p ¼ 2	~n=L, with ~n ¼
ð2; 2; 2Þ, (2, 2, 1), (2, 2, 0), (2, 1, 1), (2, 1, 0), (2, 0, 0), (1, 1, 1),
(1, 1, 0), (1, 0, 0), and (0, 0, 0).

TABLE II. Listed in the table are the Aþþ
1 glueball massesMG,

the renormalization constants ZðsÞ
V ðasÞ of the spatial component

of the vector current, and the form factors E1ðQ2 ¼ 0; asÞ
calculated on the two lattices with � ¼ 2:4 and 2.8, respectively.
Also shown are the continuum extrapolation of E1ð0Þ and the
resultant partial width �.

� MG (GeV) ZðsÞ
V ðasÞ E1ð0; asÞ (GeV) � (keV)

2.4 1.360(9) 1.39(2) 0.0708(43) � � �
2.8 1.537(7) 1.11(1) 0.0602(31) � � �
1 1.710(90) [3] � � � 0.0536(57) 0.35(8)
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�ð3Þ
�;jð ~pf; ~q; tf; tÞ ¼ 1

T

XT�1

�¼0

X
~y

e�i ~q� ~yh�ð ~pf; tf þ �ÞJ�ð ~y; tþ �ÞOV;jð~0; �Þi

¼ 1

T

XT�1

�¼0

X
~y

e�i ~q� ~yh�ð ~pf; tf þ �ÞTr½��SFð ~y; tþ �; ~0; �Þ�j�5S
y
Fð ~y; tþ �; ~0; �Þ�5�i

¼ X
S;V;r

e�ESðtf�tÞe�EVt

2ESð ~pfÞV32EVð ~piÞ h0j�ð ~pf; 0ÞjSð ~pfÞihSð ~pfÞjJ�ð0ÞjVð ~pi; rÞihVð ~pi; rÞjOy
V;jð0Þj0i; (6)

where J�ðxÞ ¼ �cðxÞ��cðxÞ is the vector current operator,
OV;j ¼ �c�jc the conventional interpolation field for J=c ,
and the summation in the last equality is over all the possible
states and vector polarizations, ~pi is the spatial momentum
of the initial vector charmonium and satisfies the relation
~pi ¼ ~pf þ ~q. The vector current J�ðxÞ, which is conserved
in the continuum limit, is no longer conserved on the lattice
and requires amultiplicative renormalization. In this Letter,
we adopt the nonperturbative strategy proposed byRef. [20]
to define the renormalization constant,

Z�
V ðtÞ ¼

p�

2EðpÞ
�ð2Þ

c
c

ð ~p; tf ¼ T=2Þ
�ð3Þ

c��
c

ð ~pf ¼ ~pi ¼ ~p; tf ¼ T=2; tÞ ; (7)

where �ð2Þ

c
c

is the two-point function of the pseudoscalar
charmonium 
c, �

ð3Þ

c��
c

is the corresponding three point
function with the vector current insertion on one of the
quark lines. It should be remarked that the possible discon-
nected diagrams due to the charm quark-antiquark annihi-
lation are neglected in this Letter.

The parameters ES, EV , the matrix elements
h0j�ð ~pf; 0ÞjSð ~pfÞi and h0jOV;jjVð ~pi; rÞi can be derived

from the relevant two-point functions of glueballs and
J=c . Specifically, from Eq. (5) we have

h0j�ð ~pf; 0ÞjSð ~pfÞi �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ESð ~pfÞV3

q
: (8)

For the vector meson we take the following convention,

h0jOV;jð0ÞjVð ~p; rÞi ¼ fV�jð ~p; rÞ; (9)

where fV is a parameter independent of ~p, and �jð ~p; rÞ
the polarization vector of the vector meson, whose con-
crete expression depends on reference frames and is irrele-
vant to the calculation in this Letter. By using the multipole
decomposition, the matrix elements hSð ~pfÞjJ�ð0ÞjVð ~pi; rÞi
can be written as [20],

X
r

hSð ~pfÞjJ�ð0ÞjVð ~pi; rÞi�jð ~pi; rÞ

¼ ��jE1ðQ2Þ þ ��jC1ðQ2Þ; (10)

where ��j and��j are known functions of pf and pi (their

explicit expressions are neglected here), E1ðQ2Þ and
C1ðQ2Þ are the two form factors which depend only on
Q2 ¼ �ðpi � pfÞ2. Only the form factor E1ðQ2Þ will be
needed to determine the decay width with

�ðJ=c ! �G0þþÞ ¼ 4

27
�

j ~p�j
M2

J=c

jE1ð0Þj2; (11)

where � is the fine structure constant, p� the photon

momentum with j ~p�j¼ðM2
J=c�M2

GÞ=ð2MJ=c Þ. Therefore,
we will only focus on the extraction of E1ðQ2Þ.
To measure E1ðQ2Þ with different Q2 on the lattice, we

create J=c on lattices with the momentum ~pi ¼ ~0 or
j ~pij ¼ 2	=Las, and the scalar glueball with the momen-
tum ~pf ¼ 2	~n=Las, where ~n is ranged from (0, 0, 0) to

(2, 2, 2). Among all the combinations of the vector current
index �, the polarization index j, the glueball momentum
pf, and the J=c momentum pi, it is found that there are

specific combinations which give ��iðpf; piÞ ¼ 1 and

��iðpf; piÞ ¼ 0. Hereafter, we will only select these com-

binations for our practical data analysis. An additional
benefit of this selection is that in these combinations one
has

P
r�

�
j ð ~pi; rÞ�jð ~pi; rÞ ¼ 1.

With these prescriptions, the form factor E1ðQ2Þ can be
derived as,

~E1ðQ2; tf; tÞ �
ZðsÞ
V �ð3Þð ~pf; ~pi; tf; tÞ

Cð ~pf; tf � tÞ�ð2Þð ~pi; tÞ
fV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ESð ~pfÞV3

q

� ðt; tf � t � 0Þ; (12)

where Q2 can be given by ~pi and ~pf, the indices of the

three-point function �ð3Þ and the related two-point func-

tions �ð2Þ are omitted here, and ZðsÞ
V is the renormalization

constant of the spatial components of the vector current. In
practice, the symmetric indices and momentum combina-
tions which give the same Q2 are averaged to increase the
statistics. Traditionally, the time separation t and tf � t

should be kept large enough for the ground states to
contribute dominantly to the three point function. Even
with this large statistics, we find that the signal of the
glueball damps rapidly with respect to tf � t. However,

this is not a real disaster since the optimal glueball opera-
tors we use couple almost exclusively to the ground state,
as is mentioned before. So we fix tf � t ¼ 1 with varying t

and extract E1ðQ2Þ from the plateaus of ~E1ðQ2; tf; tÞ.
With the very high statistics in this Letter, the hadron
parameters, such as the energies of the glueball and
J=c , the constant fV in Eq. (9), and the matrix elements
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h0j�ð ~p; 0ÞjSð ~pÞi can be determined very precisely and are
treated as known parameters.

E1ðQ2Þ for different Q2 are extracted from the same
configuration ensemble and are therefore highly correlated.
In the data analysis we fit them through the correlated data
fitting. For each lattice system, the 5000 configurations are
divided into 100 bins with 50 configurations in each bin.
The measurements in each bin are averaged and the aver-
age is taken as an independent measurement. After that, all
E1ðQ2Þs are extracted simultaneously through the jack-
knife method. In order to get the form factor at Q2 ¼ 0,
we carry out a correlated polynomial fit to the E1ðQ2Þ from
Q2 ¼ �1:0 GeV2 to 2:5 GeV2,

E1ðQ2Þ ¼ E1ð0Þ þ aQ2 þ bQ4: (13)

Figure 2 shows the final results of E1ðQ2Þ for � ¼ 2:4 (the
upper panel) and � ¼ 2:8 (the lower panel), where the red
points are the calculated value with jackknife errors, and
the red curves are the polynomial fit with jackknife error
bands, the black points label the interpolated E1ð0; asÞ.

The last step is the continuum extrapolation using the
two lattice systems. The continuum limit of E1ð0; asÞ is
determined to be E1ð0Þ ¼ 0:0536ð57Þ GeV by performing
a linear extrapolation in a2s . For the continuum value of the
scalar glueball mass, we take MG ¼ 1:710ð90Þ GeV from
Ref. [3]. Thus, according to Eq. (11), we finally get

the decay width �ðJ=c ! �G0þþÞ ¼ 0:35ð8Þ keV. Using
the reported total width of J=c , �tot ¼ 92:9ð2:8Þ keV, the
corresponding branching ratio is

�ðJ=c ! �G0þþÞ=�tot ¼ 3:8ð9Þ � 10�3: (14)

By comparing our result with their production rates
in the radiative decay of J=c , we can get some
useful information for the glueball components of
the scalar mesons f0ð1710Þ, f0ð1500Þ, and f0ð1370Þ.
From PDG2010 [21], the branching ratios of the
observed radiative decay modes of J=c to f0ð1710Þ
are BrðJ=c ! �f0ð1710Þ ! �K �KÞ ¼ 8:5þ1:2

�0:9 � 10�4,

BrðJ=c ! �f0ð1710Þ ! �		Þ ¼ ð4:0 	 1:0Þ � 10�4,
BrðJ=c ! �f0ð1710Þ ! �!!Þ ¼ ð3:1 	 1:0Þ � 10�4,
which add up to about 1:5� 10�3. With the measured
branching ratio Brðf0ð1710Þ ! K �KÞ ¼ 0:36	 0:12 [22],
and the ratio �ðf0ð1710Þ ! 		Þ=�ðf0ð1710Þ ! K �KÞ ¼
0:41þ0:11

�0:17 [23] (Ref. [22] also predicts this ratio to be

0:32	 0:14 from a coupled channel study of meson-meson
S-waves), one can estimate the production rate of f0ð1710Þ
to be ð2:4	 0:8Þ � 10�3 or ð2:7	 1:3Þ � 10�3. This is
compatible with our lattice result. For the f0ð1500Þ,
PDG2010 gives a lower bound to its production rate in
J=c radiative decay, BrðJ=c ! �f0ð1500ÞÞ> 5:7ð8Þ �
10�4 [21]. On the other hand, with the BESII result
BrðJ=c ! �f0ð1500Þ ! �		Þ ¼ ð1:01 	 0:32Þ � 10�4

[23], and the branching ratio Brðf0ð1500Þ ! 		Þ ¼
0:349	 0:023 [21], BrðJ=c ! �f0ð1500ÞÞ is estimated
to be 2:9ð9Þ � 10�4. Both are much smaller than our
prediction. Finally, there is no evidence of the production
of f0ð1370Þ in the J=c radiative decays. Based on this
comparison, f0ð1710Þ seems to have scalar glueballs as its
dominant components, while for the other two scalar me-
sons, this does not seem to be the case.
To summarize, we have carried out the first lattice study

on the E1 amplitude of J=c radiatively decays into the
pure gauge scalar glueball G0þþ in the quenched approxi-
mation. With two different lattice spacings, the decay
amplitude is extrapolated to the continuum limit with a
value E1ðQ2 ¼ 0Þ ¼ 0:0536ð57Þ GeV. Thus, the partial
decay width �ðJ=c ! �G0þþÞ is predicted to be
0.35(8) keV, which gives the branching ratio �=�tot ¼
3:8ð9Þ � 10�3. We admit that the systematic uncertainties
due to the quenched approximation are not under control in
this Letter; however, we are pleased to see that a recent
2þ 1-flavor dynamical lattice study on the glueball spec-
trum claims that there are not large unquenching effects
observed, especially for the scalar and tensor glueballs
[24]. Anyway, our results are helpful in the sense that
f0ð1710Þ appears to have the largest overlap to the pure
gauge glueball among the relevant scalar mesons. We hope
this fact sheds some light on the long-lasting puzzle of the
identification of the scalar glueball.
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FIG. 2 (color online). The extracted form factors E1ðQ2Þ in the
physical units. The upper panel is for � ¼ 2:4 and the lower one
for � ¼ 2:8. The curves with error bands show the polynomial fit
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