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The effect of a stochastic background of cosmological perturbations on the luminosity-redshift relation

is computed to second order through a recently proposed covariant and gauge-invariant light-cone

averaging procedure. The resulting expressions are free from both ultraviolet and infrared divergences,

implying that such perturbations cannot mimic a sizable fraction of dark energy. Different averages are

estimated and depend on the particular function of the luminosity distance being averaged. The energy

flux being minimally affected by perturbations at large z is proposed as the best choice for precision

estimates of dark-energy parameters. Nonetheless, its irreducible (stochastic) variance induces statistical

errors on ��ðzÞ typically lying in the few-percent range.
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Establishing the existence of dark energy and deter-
mining its parameters is one of the central issues in
modern cosmology. Evidence of a sizable dark-energy
component in the cosmic fluid comes from different
sources: cosmic microwave background anisotropies,
models of large-scale-structure formation and, most
directly, the luminosity-redshift relation of Type Ia super-
novae used as standard candles.

In this latter case, on which we concentrate our
attention, the analysis is usually made in the simplified
context of a homogeneous and isotropic Friedmann-
Lemaı̂tre-Robertson-Walker (FLRW) cosmology. The
issue has then been raised about whether inhomogeneities
may affect the conclusion of such a naive analysis.
Inhomogeneous models in which we occupy a privileged
position in the Universe, for instance, can mimic dark
energy (as first pointed out in Ref. [1]), but look both
unrealistic and highly fine-tuned. More interestingly, we
should address this question in the presence of stochasti-
cally isotropic and homogeneous perturbations of the kind
predicted by inflation. We present here the main ideas and
results of such a study, while its detailed derivation and
discussion are presented in Ref. [2] and in a forthcoming
paper [3].

There is by now general agreement that superhorizon
perturbations cannot mimic dark-energy effects [4]. By
contrast, the impact of subhorizon perturbations is still
unsettled [5–7] owing to the appearance of ultraviolet diver-
gences (see Ref. [8] for the possible observational impact of
such ultraviolet divergences on the anisotropy of the
Hubble flow) while computing their ‘‘backreaction’’ on
certain classes of large-scale averages [6,7]. The possibility

that these effects may simulate a substantial fraction of dark
energy, or that they may at least play some role in the
context of near-future precision cosmology, has to be seri-
ously considered.
In order to address these issues, we have studied the

luminosity-redshift relation in a spatially flat � plus cold
dark matter (�CDM) model perturbed by a stochastic
background of inhomogeneities. The luminosity distance
dL now depends on the redshift z as well as on the angular
coordinates of the sources and must be inserted in an
appropriate light cone and ensemble average [9,10].
Unlike the analyses in Refs. [6,7], we find a result always
free from ultraviolet divergences and with no significant
infrared contributions either. As a consequence, correc-
tions are typically small, certainly too small to mimic a
sizeable fraction of dark energy. However, interestingly
enough, both their size and their z dependence strongly
depend on the particular function of dL being averaged.
We find, in particular, that the energy flux �� d�2

L is
practically unaffected by inhomogeneities, while the most
commonly used variables (like the distance modulus ��
5log10dL) may receive much larger corrections. This cre-
ates (at least in principle) intrinsic ambiguities in the
measure of the dark-energy parameters, unless the back-
reaction of stochastic inhomogeneities is properly taken
into account. Actually, the advantages of flux averaging for
minimizing biases on dark-energy parameters was first
pointed out in Ref. [11], where it was shown how the
binning of data in appropriate redshift intervals can reduce
the bias due to systematic effects such as weak lensing. It is
intriguing that the preferred role played by the flux variable
also comes out in this Letter where we perform a
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completely different averaging procedure at fixed redshift.
Our conclusions are not due to a binning of data, but to an
application of our covariant space-time average to different
functions of the luminosity distance.

Let us start by recalling the standard expression for
the luminosity distance in an unperturbed flat �CDM
model, with present fractions of critical density �� and
�m ¼ 1���,

dFLRWL ðzÞ ¼ 1þ z

H0

Z z

0

dz0

½�� þ�mð1þ z0Þ3�1=2 : (1)

Consider now the expression for dL in the corresponding
perturbed geometry. Combining light-cone and ensemble
averages (denoted, respectively, by brackets and overbars),
we can write the averaged result in the form

hdLiðzÞ ¼ dFLRWL ½1þ fdðzÞ�; (2)

where fdðzÞ represents the ‘‘backreaction’’ on dL due to
inhomogeneities. For consistency, dL has to be computed
(at least) up to the second perturbative order since en-
semble averages of first-order quantities are vanishing for
stochastic perturbations. In particular, backreaction terms
arise also from correlations between the inhomogeneities
present in the averaged variable and in the covariant inte-
gration measure. Therefore, a consistent perturbative cal-
culation requires the inclusion of linear second-order
contributions, since they are of the same order as the above
quadratic first-order terms (see also Ref. [10], Sec. 4).
A detailed computation of fdðzÞ would thus enable us to
extract the ‘‘true’’ value of the dark-energy parameters

from the measurement of hdLiðzÞ after taking the correction
into account.

However, as already stressed in Ref. [10], given the
covariant (light-cone) average of a perturbed (inhomoge-
neous) observable S, the average of a generic function of
this observable differs in general from the function of its

average, i.e., hFðSÞi � FðhSiÞ. Expanding the observable to
second order as S ¼ S0 þ S1 þ S2 þ � � � , one finds
hFðSÞi ¼ FðS0Þ þ F0ðS0ÞhS1 þ S2i þ F00ðS0ÞhS21=2i; (3)

where hS1i � 0 as a consequence of the ‘‘induced back-
reaction’’ terms (see Ref. [10], Sec. 4). Thus, different
functions of the luminosity distance are differently affected
by the inhomogeneities and require different ‘‘subtraction’’
procedures. Finding the function that minimizes the back-
reaction will help of course for a precision estimate of the
cosmological parameters. One of the main claims of this
Letter is the identification of such an optimal observable
with the energy flux � ¼ L=ð4�d2LÞ received from a stan-
dard candle of luminosity L located on the observer’s past
light cone. We now illustrate how we performed such a
calculation.

The average value of �, obviously controlled by the
average of d�2

L , has to be carried out on the past light cone

of the observer at a fixed redshift z using the gauge-invariant
prescription introduced in Ref. [9]. This is most conven-
iently done [9,10] in the so-called geodesic light-cone
gauge (GLC), where the metric depends on six arbitrary
functions (�, Ua, �ab, a, b ¼ 1, 2), and the line element

takes the form (with ~�1 ¼ ~�, ~�2 ¼ ~�),

ds2 ¼ �2dw2 � 2�dwd�

þ �abðd~�a �UadwÞðd~�b �UbdwÞ: (4)

The correspondence between the GLC gauge and the spa-
tially flat FLRW geometry is [9] � ¼ t, w ¼ rþ �, � ¼
aðtÞ, Ua ¼ 0, and �abd~�

ad~�b ¼ a2r2ðd~�2 þ sin2 ~�d ~�2Þ,
where � is the conformal-time coordinate (d� ¼ dt=a).
In the GLC gauge, the past light cone is defined by the

condition w ¼ w0 ¼ const, and the redshift is given by

1þ z ¼ �ðw0; �0; ~�
aÞ=�ðw0; �; ~�

aÞ: (5)

Furthermore, the luminosity distance of the source is

simply expressed as [10] dL ¼ ð1þ zÞ2�1=4ðsin~�Þ�1=2

yielding the following exact result [2]:

hd�2
L iðz; w0Þ ¼ 4�ð1þ zÞ�4

R
d2 ~�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�½w0; �ðz; ~�aÞ; ~�b�

q ; (6)

where � ¼ det�ab, and �ðz; ~�aÞ is obtained by solving
Eq. (5). The above expression has a simple physical inter-
pretation: the averaged flux for a given z is inversely
proportional to the proper area [computed with respect to
the metric (4)] of the surface lying on our past light cone at
the given value of z. Flux conservation is probably at the
basis of the particular simplicity of this average and of its
minimal deviation from the homogeneous value.
To compute this quantity in the perturbed geometry of

our interest, we need to express it in a gauge where the
stochastic background of cosmological perturbations is
explicitly known up to second order. To this purpose, we
can use the standard Poisson gauge where we include first-
and second-order scalar perturbations, neglecting their ten-
sor and vector counterparts (see Ref. [2] for a discussion of
this point). Performing the relevant transformations to sec-
ond order, we arrive at the following analogue of Eq. (2):

hd�2
L i ¼ ðdFLRWL Þ�2ðI�ðzÞÞ�1 � ðdFLRWL Þ�2½1þ f�ðzÞ�;

(7)

where I� has in general the following structure:

I�ðzÞ ¼
Z d ~�d~� sin~�

4�
½1þ I1 þ I1;1 þ I2�ð~�; ~�; zÞ: (8)

Here I1, I1;1, I2 are, respectively, the first-order, quadratic

first-order, and genuine second-order contributions of our
stochastic fluctuations. After solving the relevant perturba-
tion equations [12] they can all be expressed in terms of the
first-order Bardeen potential �ðx; �Þ. Using the stochastic
properties of this perturbation and expanding in Fourier
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modes�kð�Þ, we can then obtain an expression for ðI�Þ�1

where first-order contributions drop out because of the
ensemble average, and the scalar perturbations only appear
through the so-called dimensionless power spectrum,
P ðk; �Þ ¼ ðk3=2�2Þj�kð�Þj2.

Unfortunately, ðI�Þ�1 contains integrals over null geo-
desics lying on the past light cone of the given observer
(see Ref. [10], Sec. 3.2), which get intertwined with the
time dependence of P , forcing us to proceed with an
approximate numerical integration. This will be done
below after inserting (as an instructive example) an illus-
tration of the limiting CDM case, where all integrals but
the one over k can be done analytically thanks to the time
independence of P ([10], Sec. 5).

In that case, the result can be written in the form

f�ðzÞ ¼
Z 1

0

dk

k
P ðkÞ½f1;1ðk; zÞ þ f2ðk; zÞ�; (9)

where f1;1 and f2 are complicated—but known—analytic

functions of their arguments [3]. Furthermore, the leading
contribution in the region of z relevant for dark-energy

phenomenology comes from terms of the type fðk; zÞ �
ðk=H 0Þ2 ~fðzÞ, where H 0 is the present Hubble scale. We
can then write to a very good accuracy,

f�ðzÞ ’ ½~f1;1ðzÞ þ ~f2ðzÞ�
Z 1

0

dk

k

�
k

H 0

�
2
P ðkÞ; (10)

where an explicit calculation gives [3]

~f 1;1ðzÞ ¼ 10� 12
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z

p þ 5zð2þ ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z

p Þ
27ð1þ zÞð ffiffiffiffiffiffiffiffiffiffiffiffi

1þ z
p � 1Þ2 ; (11)

~f 2ðzÞ ¼ � 1

189

�
2� 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z

p þ zð9� 2
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z

p Þ
ð1þ zÞð ffiffiffiffiffiffiffiffiffiffiffiffi

1þ z
p � 1Þ

�
: (12)

The absolute value (and sign) of f�ðzÞ are illustrated in
Fig. 1 showing the accuracy of the leading order terms
[Eq. (10)], and confirming that the backreaction of a real-
istic spectrum of stochastic perturbations induces negli-
gible corrections to the averaged flux at large z (the larger
corrections at small z due to ‘‘Doppler terms’’ has been
discussed in Ref. [10]). In addition, it shows that in any
case, such corrections have the wrong z dependence (in
particular, they change sign at some z) to simulate even a
tiny dark-energy component. For the considered spectrum
(behaving as kns�5log2k at large k, see Ref. [13]) the
spectral integral is convergent and very weakly sensitive
to the chosen value of the UV cutoff [10] representing here
the limit of validity of our perturbative approach.

We now come to the more realistic �CDM case, where
the f� correction should be obtained by a full numerical
integration of Eqs. (7) and (8). For simplicity, we will only
take into account those terms giving the leading
(k2-enhanced) contributions in the CDM case. For
�CDM we can generally expect a smaller correction due

to the fact that the spectrum is now suppressed at large k by
a lower value of the equality scale keq [13]. This is con-

firmed by the explicit numerical result for jf�j presented in
Fig. 2. The small value of jf�j at large z leads us to
conclude that the averaged flux is a particularly appropriate
quantity for extracting from the observational data the
‘‘true’’ cosmological parameters. As we are going to see
now, the situation is somewhat different for other functions
of dL.
Indeed, let us apply the general result of Eq. (3) to the

flux variable S ¼ � and consider two important examples:

Fð�Þ ¼ ��1=2 � dL and Fð�Þ ¼ �2:5log10�þ const�
� (the distance modulus). For the luminosity distance,
following the notations of Eq. (2) and using the general
result from Eq. (3), we obtain
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FIG. 1. The fractional correction f� of Eq. (9) (solid curve)
compared with the same quantity given to leading order by
Eq. (10) (dashed curve) in the context of an inhomogeneous
CDM model. We have used for P ðkÞ the inflationary scalar
spectrum with the WMAP parameters [17] and the transfer func-
tion given in Ref. [13] (see also Ref. [10]). The plotted curve
refers, as an illustrative example, to an UV cutoff kUV ¼ 1 Mpc�1.
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FIG. 2. The fractional correction to the flux f� of Eq. (7) (thin
curves) is compared with the fractional correction to the lumi-
nosity distance fd of Eq. (13) (thick curves) for a �CDM model
with �� ¼ 0:73. We have used two different cutoff values:
kUV ¼ 0:1 Mpc�1 (dashed curves) and kUV ¼ 1 Mpc�1 (solid
curves). The spectrum is the same as that of Fig. 1 adapted to
�CDM.
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fd ¼ �ð1=2Þf� þ ð3=8Þhð�1=�0Þ2i: (13)

Similarly, for the distance modulus we obtain

h�i ��FLRW ¼ �1:25ðlog10eÞ½2f� � hð�1=�0Þ2i�;
(14)

where f� is defined in Eq. (7).
As clearly shown by the two above equations, the cor-

rections to the averaged values of dL and � are qualita-
tively different from those of the flux (represented by f�)
because of the extra contribution (inevitable for any non-
linear function of the flux) proportional to the square of the
first-order fluctuations. As mentioned before, the averaged
flux corrections have leading spectral contributions of the
type k2P ðkÞ. On the contrary, the new corrections to dL and
� are due to the so-called ‘‘lensing effect’’; they dominate
at large z and have leading spectral contributions of the
type k3P ðkÞ (as already discussed in Ref. [10]). The
explicit numerical integration reported in Fig. 2 confirms
that as a result, jf�j � fd at large z. We stress that even
the k3-enhanced contributions are UV finite for the case
under consideration.

We also stress that our results concerning the effects of
lensing are in good agreement with previous estimates of
the bias on supernova observables [14] and other cosmo-
logical parameters [15] induced by weak-lensing magnifi-
cation effects. Unlike in those papers, however, our general
approach automatically includes (and estimates the effects
of) all possible corrections due to the stochastic fluctua-
tions of the cosmological background to second order for
all given functions of the flux (or of dL). In fact, as
discussed in detail in Refs. [2,3], the fractional correction
fd also includes, besides the lensing effect, Doppler,
Sachs-Wolfe, integrated Sachs-Wolfe, frame-dragging
effects, etc.

Let us now briefly discuss to what extent the enhanced
corrections due to the squared first-order fluctuations can
affect the determination of the dark-energy parameters if
quantities other than the flux are used in the fits. To this
purpose, we consider the much used (average of the) dis-
tance modulus given in Eq. (14), referred to as usual to the
homogeneous Milne model with �M ¼ 5log10½ð2þ zÞz=
ð2H0Þ�. In Fig. 3 we compare the averaged value h�i �
�M with the corresponding expression in a homogeneous
�CDM model with different values of ��. We also show
the expected dispersion around the averaged result repre-
sented by the square root of the variance [10]. The latter is
given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�2i � ðh�iÞ2

q
¼ �2:5ðlog10eÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð�1=�0Þ2i

q
; (15)

while for the flux we simply find

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð�=�0Þ2i � ðh�=�0iÞ2

q
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð�1=�0Þ2i

q
: (16)

As illustrated in Fig. 3, we find that even for the distance
modulus, the effect of inhomogeneities on the average only
affects the determination of �� at the third decimal figure
(see also Fig. 2), at least for the inflationary power spec-
trum with the �CDM transfer function of Ref. [13]. In that

case, the curves for h�i and �FLRW are practically coinci-
dent at large z. We have considered other spectra which
take into account nonlinear effects and have more power at
short scales, like those obtained following [16]. Using such
spectra only affects very mildly the k2-enhanced terms
(hence the flux) while they increase the corrections wher-
ever the k3-enhanced lensing terms play a major role. In
particular, the variance due to the fluctuations, which is
already at the few-percent level at large z for the power
spectrum of Ref. [13] (see Fig. 3), can be further increased
[3]. Note that even for these improved spectra, all our
integrals are still free of UV divergences since, in any
case, P falls faster than k�3 (i.e., the matter density con-
trast spectrum grows slower than k).
Our main conclusions can be summarized as follows:
(1) Dealing directly with the experimentally measured

luminosity-redshift relation within a gauge-independent
approach leads to results for the fractional corrections to
the averaged variables and the corresponding variances
which are automatically free from UV (and IR) divergen-
ces for any function of the luminosity distance. This can be
contrasted with the case of more formal spacelike averages
[6,7] for which the physical interpretation of the results
may have no direct relation with the observed cosmic
acceleration (first reference in [5]) and, as shown in
Ref. [7], the accidental cancellation of UV divergences is
strongly dependent on the observable considered.
(2) The actual value of the backreaction strongly

depends on the quantity being averaged. It turns out to be
minimal for the flux�, which is also practically insensitive
to the short-distance behavior of the power spectrum.

0.02 0.05 0.10 0.20 0.50 1.00 2.00

0.2

0.1

0.0

0.1

0.2

0.3

z

FIG. 3. The averaged distance modulus h�i ��M (thick solid
curve) and its dispersion of Eq. (15) (shaded region) are com-
puted for�� ¼ 0:73 and compared with the homogeneous value
for the unperturbed �CDM models with �� ¼ 0:69, 0.71, 0.73,
0.75, 0.77 (dashed curves). We have used kUV ¼ 1 Mpc�1 and
the same spectrum as in Fig. 2.
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Therefore, the flux stands out as the safest observable for
precision cosmology. For other observables, such as the
distance modulus, the backreaction is considerably larger
and is more sensitive to the spectrum used.

(3) The dispersion due to stochastic fluctuations is much
larger than the backreaction itself, implying an irreducible
scatter of the data that may limit to the percent level
(see Fig. 3) the precision attainable on cosmological
parameters because of the present limited statistics.

(4) We calculated here the full second-order effect of
stochastic perturbations and concluded that they cannot
simulate a substantial fraction of dark energy. Possible
contributions coming from the nonperturbative regime on
length scales much smaller than 1 Mpc have still to be
taken into consideration before final conclusions can be
drawn.

We wish to thank Ruth Durrer, Valerio Marra, Slava
Mukhanov, Misao Sasaki, and Roman Scoccimarro for
stimulating discussions. The research of I. B. D. at
Perimeter Institute is supported by the government of
Canada through Industry Canada and by the Province of
Ontario through the Ministry of Research and Innovation.

[1] M.-N. Celerier, Astron. Astrophys. 353, 63 (2000).
[2] I. Ben-Dayan, G. Marozzi, F. Nugier, and G. Veneziano,

J. Cosmol. Astropart. Phys. 11 (2012) 045.
[3] I. Ben-Dayan, M. Gasperini, G. Marozzi, F. Nugier, and

G. Veneziano (to be published).

[4] E. E. Flanagan, Phys. Rev. D 71, 103521 (2005); G.
Geshnizjani, D. J. H. Chung, and N. Afshordi, Phys. Rev.
D 72, 023517 (2005); C.M. Hirata and U. Seljak, Phys.
Rev. D 72, 083501 (2005).

[5] A. Ishibashi and R.M. Wald, Classical Quantum Gravity
23, 235 (2006); A. Paranjape and T. P. Singh, Phys. Rev.
Lett. 101, 181101 (2008).

[6] E.W. Kolb, Classical Quantum Gravity 28, 164009
(2011).

[7] C. Clarkson and O. Umeh, Classical Quantum Gravity 28,
164010 (2011).

[8] G. Marozzi and J.-P. Uzan, Phys. Rev. D 86, 063528
(2012).

[9] M. Gasperini, G. Marozzi, F. Nugier, and G. Veneziano,
J. Cosmol. Astropart. Phys. 07 (2011) 008.

[10] I. Ben-Dayan, M. Gasperini, G. Marozzi, F. Nugier, and G.
Veneziano, J. Cosmol. Astropart. Phys. 04 (2012) 036.

[11] Y. Wang, Astrophys. J. 536, 531 (2000).
[12] N. Bartolo, S. Matarrese, and A. Riotto, J. Cosmol.

Astropart. Phys. 05 (2006) 010.
[13] D. J. Eisenstein and W. Hu, Astrophys. J. 496, 605

(1998).
[14] Y. Wang, D. E. Holz, and D. Munshi, Astrophys. J. 572,

L15 (2002).
[15] D. Sarkar, A. Amblard, D. F. Holz, and A. Cooray,

Astrophys. J. 678, 1 (2008).
[16] R. E. Smith, J. A. Peacock, A. Jenkins, S. D.M. White,

C. S. Frenk, F. R. Pearce, P. A. Thomas, G. Efstathiou, and
H.M. P. Couchman, Mon. Not. R. Astron. Soc. 341, 1311
(2003).

[17] E. Komatsu et al., Astrophys. J. Suppl. Ser. 192, 18
(2011).

PRL 110, 021301 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

11 JANUARY 2013

021301-5

http://dx.doi.org/10.1088/1475-7516/2012/11/045
http://dx.doi.org/10.1103/PhysRevD.71.103521
http://dx.doi.org/10.1103/PhysRevD.72.023517
http://dx.doi.org/10.1103/PhysRevD.72.023517
http://dx.doi.org/10.1103/PhysRevD.72.083501
http://dx.doi.org/10.1103/PhysRevD.72.083501
http://dx.doi.org/10.1088/0264-9381/23/1/012
http://dx.doi.org/10.1088/0264-9381/23/1/012
http://dx.doi.org/10.1103/PhysRevLett.101.181101
http://dx.doi.org/10.1103/PhysRevLett.101.181101
http://dx.doi.org/10.1088/0264-9381/28/16/164009
http://dx.doi.org/10.1088/0264-9381/28/16/164009
http://dx.doi.org/10.1088/0264-9381/28/16/164010
http://dx.doi.org/10.1088/0264-9381/28/16/164010
http://dx.doi.org/10.1103/PhysRevD.86.063528
http://dx.doi.org/10.1103/PhysRevD.86.063528
http://dx.doi.org/10.1088/1475-7516/2011/07/008
http://dx.doi.org/10.1088/1475-7516/2012/04/036
http://dx.doi.org/10.1086/308958
http://dx.doi.org/10.1088/1475-7516/2006/05/010
http://dx.doi.org/10.1088/1475-7516/2006/05/010
http://dx.doi.org/10.1086/305424
http://dx.doi.org/10.1086/305424
http://dx.doi.org/10.1086/341604
http://dx.doi.org/10.1086/341604
http://dx.doi.org/10.1086/586886
http://dx.doi.org/10.1046/j.1365-8711.2003.06503.x
http://dx.doi.org/10.1046/j.1365-8711.2003.06503.x
http://dx.doi.org/10.1088/0067-0049/192/2/18
http://dx.doi.org/10.1088/0067-0049/192/2/18

