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We describe experiments that probe the evolution of shear jammed states, occurring for packing

fractions�S � � � �J , for frictional granular disks, where above�J there are no stress-free static states.

We use a novel shear apparatus that avoids the formation of inhomogeneities known as shear bands. This

fixed � system exhibits coupling between the shear strain, �, and the pressure, P, which we characterize

by the ‘‘Reynolds pressure’’ and a ‘‘Reynolds coefficient,’’ Rð�Þ ¼ ð@2P=@�2Þ=2. R depends only on �

and diverges as R� ð�c ��Þ�, where �c ’ �J and � ’ �3:3. Under cyclic shear, this system evolves

logarithmically slowly towards limit cycle dynamics, which we characterize in terms of pressure

relaxation at cycle n: �P ’ �� lnðn=n0Þ. � depends only on the shear cycle amplitude, suggesting an

activated process where � plays a temperaturelike role.
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Much recent work has focused on the mechanical behav-
ior of disordered solids, including granular materials, col-
loids, foams, andmolecular glass formers. These systems are
well known for their glassy flow behavior and surprising
rigidity. Notably, Bi et al. [1,2] recently showed that, in
frictional systems, e.g., most common granular materials,
shear strain,�, can shear jam [2] a loose, low density packing
of particles, enabling it to support a shear stress. The nature
of these shear jammed states, particularly how they form and
evolve, is an unsolved problem with obvious relevance,
whose understanding is the goal of the current Letter.

To set the context, we note that Bi et al. [2] showed that
there is a lowest packing fraction �J, such that below
(above) this density, there are (no) zero-stress states.
Application of shear to a zero-stress state in �S � �
� �J leads to highly anisotropic contact and force net-
works, to nonzero shear stress �, and to nonzero pressure
P. Here, � ¼ ð�1 � �2Þ=2 and P ¼ ð�1 þ �2Þ=2, where
the �i are the principal stresses of the 2D stress tensor, �̂.
Starting from zero stress, the system traverses a fragile
regime and, with additional shear strain, the system arrives
at a fully jammed state where the force or contact networks
percolate in all directions. These shear jammed states may
occur naturally in many granular systems, such as geo-
physical flows, sand, and suspensions. Improved under-
standing of shear jammed states is thus crucial for both a
better understanding of the concept of jamming for (fric-
tional) materials and to shed light on the complex rheology
of dense granular media [3].

At the heart of shear jamming are classic studies by
Reynolds, who showed that, under fixed pressure, granular
systems can dilate in response to shear [4]. Despite its
relevance, a quantitative understanding of this effect has
remained elusive over the last century. This is partly due to
a complication in the study of sheared frictional materials:
Shear typically induces the formation of dilated localized

shear bands, where most of the shear strain is confined.
System-wide measures may tend to reflect the band prop-
erties rather than the whole system, making it difficult to
interpret experiments.
To understand the important physics underlying shear

jamming, it is crucial to have an experimental approach
that avoids shear banding. In this Letter,we describe such an
approach that, for the first time to our knowledge, avoids
shear banding.Measurements using thismethod provide the
first characterizations of, and key insights into, the me-
chanical response and dynamics of shear jammed frictional
packings. In these fixed volume experiments, the response
to shear is manifested as a nonlinearly growing pressure
with shear strain, which is related to Reynolds’ dilatancy.
Associated with this pressure effect are structural rear-
rangements that lead to a surprising Arrhenius-like stress
relaxation dynamics in periodically sheared disk packings.
Key findings.—In these experiments, we shear a disor-

dered disk packing (2D) at fixed density. In such a system,
dilatancy cannot occur, but a related phenomenon occurs:
The stresses �̂ respond to the shear strain. We find that P
increases roughly as �2, which we describe by a ‘‘Reynolds
coefficient,’’ R ¼ ð@2P=@�2

j�Þ=2. We find that R depends

only on � and it provides a simple parametrization of the
coupling between P and �. R seems to diverge as �
approaches �c ’ �J, thus identifying a special role for
�J for the shear jamming states.
An additional key observation from this work is that for

�S � � � �J the stress response to cyclic shear strain
shows slow relaxational dynamics to a limit cycle that
depends on driving. The deviation from a limit cycle,
measured by pressure, shows a logarithmic decay over
time or cycle number. The data for stress relaxation exhibit
a totally unexpected scaling form, as developed below.
Experimental setup.—Key to these experiments is a

novel apparatus that provides (simple) shear throughout
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the system, in contrast to wall-driven shear. The base of the
apparatus consists of narrow, parallel, horizontal, and
transparent slats. Shear is applied by deforming the slats
and boundary uniformly in the y direction, keeping the
x dimension fixed at L, to provide uniform simple shear
strain � ¼ �y=L at constant packing fraction� [Fig. 1(a)].
On the slats rest �1000 bidisperse photoelastic particles
(Vishay PSM-4) of diameters 12.7 and 15.9 mm; the slat
width is of the order of the particle size. The relative
numbers of large to small particles is set to 1:3:3, in order
to prevent crystallization. Before each experiment, we
prepare a stress-free packing by rearranging the particles
(gently tapping or pushing particles) until no visual pho-
toelastic response is visible. This bottom-assisted shear
induces a linear shear profile, suppressing shear bands and
the usual inhomogeneities. It is reminiscent of the SLLOD
and related algorithms [5] for enforcing uniform shear in
molecular dynamics simulations. It bears some resem-
blance to 3D experiments by Mueggenburg [6] but with a
key difference: In the Mueggenburg experiments, a slat
geometrywas used, but the slotmotionwas not coordinated,
and sustained uniform shear did not occur. We note that a
small background pressure of �0:5 N=m is detected, even
in the absence of shear. This is due in roughly equal amounts
to small experimental errors in force determinations, our
ability to completely relax all interparticle forces, and weak
friction between the particles and the slats.

The experiment is illuminated from below by circularly
polarized uniform white light and from above by a less
intense UV light. A 22 megapixel camera above the
experiment records views with and without a circular
polarizer. We apply quasistatic shear strain in small steps.
After each step, we pause and record three views of the
system that respectively yield particle positions, photoelas-
tic responses, and rotations. Without crossed polarizers, the
edges of the particles are visible [Fig. 1(b), upper panel],

and we use a circular Hough-transform technique [7] to
determine particle centers with an accuracy of �0:02d.
With a circular polarizer in front of the camera, we image
the photoelastic pattern of colored or shaded fringes within
each particle, which encode the contact forces acting on
each particle [Fig. 1(b), middle panel]. To determine the
particle orientations, each disk ismarked diametricallywith
a line of fluorescent dye, visible under UV light with the
white light turned off [Fig. 1(b), lower panel]. Changes in
the bar orientations give particle rotations. The complete
process of multiple strain steps, followed by imaging after
each step, is fully automated, and we record up to 500 shear
cycles per run.We extract the local particle stress by either a
pattern-fitting approach [1,8], yielding the complete contact
network, particle forces, and stress tensor (e.g., P and �),
or, via G2, the local squared intensity gradient of the
photoelastic response, averaged on each particle [9,10].
G2 is a one-to-one function of P on the particle level,
providing an efficient measure for P. For small (large)
data sets, we use the former (latter) approach.
Reynolds effect.—As noted, a striking aspect of applying

shear strain to a stress-free state for �S � � � �J is the
generation of nonzero P and �, as in the shear jamming
experiments of Bi et al. [2]. In the present experiments, we
go well beyond Bi et al. to probe the evolution of shear
jammed states, first by forward shearing the system and
then by shearing cyclically. Regarding forward shear, we
prepared packings in a stress-free initial state, for 0:691 �
� � 0:816, where �J ¼ 0:835� 0:005 and �S � 0:75.
We then quasistatically shear the system by 200 small
strain steps of 0.27%, up to a total strain of � ¼ 54%
[11]. These experiments show shear jamming [2], as
expected, but, unlike previous experiments, particle track-
ing data [Fig. 1(c)] show that the shear is effectively linear
and homogeneous across the entire system. Particle dis-
placements and rotations relative to the uniform shear
background are small. The locally coarse-grained density
field [12,13] [Fig. 1(d)] shows no sign of a shear band or
permanent inhomogeneities.
For the larger �’s considered here, we could not apply

the full 54% strain because P became so large that the layer
was unstable to out-of-plane buckling. If buckling
occurred, we terminated the forward shear experiment.
The forward shear results, Fig. 2(a), indicate that the
shear-induced Reynolds pressure increases roughly as �2

with a density-dependent prefactor that we characterize by
the Reynolds coefficient,

R ¼ ð@2P=@�2
j�Þ=2: (1)

For linear isotropic elastic materials, no coupling between
shear strain and pressure is expected. But, as we apply
shear, the system becomes increasingly anisotropic, so a
P� � coupling might be possible, as expressed by @P=@�.
In our system, this derivative grows roughly as �, and
linear elasticity is not a particularly useful concept.

FIG. 1 (color online). (a) Setup schematics. (b) The three
close-up images that the camera captures at each step: particle
positions (upper), force response under polariscope (middle),
and particle orientation images under UV light (lower). (c) The x
and y displacements of particles vs their horizontal positions in
the system. (d) The coarse-grained [12,13] density profile after
27% linear shear.
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R grows strongly with � and shows an apparent but
unexpected divergence at � ¼ �c ’ �J. Figure 2(b) and
its inset show a log-log plot of R vs �� ¼ �c ��. A
power-law fit to R ¼ Að�c ��Þ� yields �¼�3:3�0:1
and �c ¼ 0:841� 0:004. By contrast, �c lies in the range
0:83 � �j � 0:84, so here, �c is not distinguishable from

�J, which is also comparable to�J for systems of friction-
less 2D particles. For � � 0:75, the system is very loose
and it does not form a percolating contact network, even
after 54% strain. Rð�Þ behavior in this case is affected by
small experimental ‘‘noise’’ effects, discussed above, and
deviates from the power-law behavior [inset of Fig. 2(b)].
We identify �S ’ 0:75, the lower limit in this system for
shear jamming.

Limit cycles.—To characterize the evolution, reproduc-
ibility, and relaxation of the stresses, we carried out mul-
tiple shear cycles. This also allowed us to determineR for�
closer to �J, where shear strains are limited due to buck-
ling; we obtain good statistics by many smaller-amplitude
strain cycles. The oscillatory shear experiments were
started from initially stress-free states for �’s in the shear
jamming regime,�S � � � �J. In a cycle, we sheared by
strain steps of 0.45% up to �max in the ‘‘forward direction,’’
followed by a shear strain decrease (� 0:45% per step) to a
smaller strain, �min. For symmetric shear cycles, �min ¼
��max, and, for asymmetric shear cycles, �min � ��max.

For symmetric cycles, P was symmetric about � ¼ 0,
approximately quadratic in �, and virtually reproducible
over many cycles, as shown in Fig. 3(a). However, details
of the network were generally not reproducible from cycle
to cycle. The Reynolds coefficient Rð�Þ followed the same
trend as in the forward shear tests [Fig. 2(b)], further
confirming the Reynolds effect. After transients, the shear
stress � also followed a reproducible path over cycles but,
unlike P, � was strongly hysteretic, with nonzero values at
� ¼ 0. There were �’s for which � ¼ 0 but P � 0, for

example, in Figs. 3(a) and 3(b) at � � 1%. However, in
such cases, � coarse grained at smaller scales than the
system size was locally nonzero, even though the global
� was 0 (e.g., because of spatial variations of the principal
stress orientations). Because of length limitations, we con-
sider only the dynamics exhibited by P and we will present
the full stress dynamics elsewhere.
The evolution of Pð�Þ for asymmetric shear cycles

differed from the symmetric case. Here, Pð�Þ was initially
asymmetric but evolved toward a symmetric shape cen-
tered around the mean strain, ��, after many cycles. Thus,
the long-term P� � dynamics was a limit cycle. The
system relaxed quickly (slowly) to the limit cycle if
sheared symmetrically (asymmetrically). Figure 3(c)
shows an example of slow evolution, where a limit cycle
was reached after about 28 cycles. In this case, Pð�Þ
evolved to a symmetric shape, similar to the forward shear
experiment, except for a shift; i.e., the system did not reach
a completely stress-free state at the midpoint of strain.
However, a long-term limit cycle was still reached with
the same Reynolds coefficient for the given density,
� ¼ 0:825.
Slow relaxation.—For asymmetric strain cycles,

�PðnÞ ¼ Pð�maxÞ � Pð�minÞ was initially nonzero but it
decreased and ultimately vanished, within fluctuations, for
n ¼ n0. When the limit cycle was reached, P was sym-
metric about �� ¼ ð�max þ �minÞ=2. The slow relaxation of
�P for asymmetric shear shows striking and novel scaling
behavior, which we characterize in terms of �, ��, and the
shear amplitude �A. Experiments to characterize this re-
laxation spanned�’s from above�S to just below isotropic
jamming �J:0:780 � � � 0:828; strain amplitudes of
�A ¼ 6:75%, 4.5%, 3%, and 1.5%; and a range of starting
strains 0 � �� � 21:35%. Experiments were 100–500
cycles long; for convenience, we measured G2 only at

FIG. 2 (color online). (a) Reynolds pressure Pð�2Þ observed
in forward shear (see the text) tests for � ¼ 0:691–0:816.
(b) Reynolds coefficient R extracted from linear fitting, obtained
from up to 54% forward shear (red squares), up to 27% forward
shear (blue dots), and cyclic shear tests under limit cycle
behavior (black triangles). The inset shows the same data on
double logarithmic scales with �c ¼ 0:841� 0:004. The error
bar is smaller than the size of the symbols unless marked. The
dashed line shows a fit to a power law. A line corresponding to an
exponent �3:3 is also shown for reference.

FIG. 3 (color online). (a) P vs � for a symmetric cyclic shear
run with � ¼ 0:825, which started from � ¼ 0 and sheared
between �max ¼ 2:25% and �min ¼ �2:25%. Only cycles 1, 2,
28, and 29 are shown in the plot. (b) � vs � for the same run and
the same shear cycles. (c) P vs � at cycles 1, 2, 28, and 29 for a
nonsymmetric cyclic shear run (�max ¼ 4:5%, �min ¼ 0) with
the same density.

PRL 110, 018302 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

4 JANUARY 2013

018302-3



�max, �min and then converted G2 to �P using a calibra-
tion. Figure 4(a) shows �P for a particular �A.

For � in the shear jamming region, �PðnÞ decayed
logarithmically slowly towards 0:

�PðnÞ ’ �� logðn=n0Þ; (2)

implying a natural ‘‘time scale’’ for relaxation, n0, that we
obtained through least squares fits of the logarithmic part
of the relaxation. All the relaxation data, for a given �A,
collapse onto a single curve when expressed in terms of
n=n0 [Fig. 4(b)], regardless of � and ��. The factor �ð�AÞ
differs for each �A [Fig. 4(c)], but �P=� is a universal
function of n=n0, as in Fig. 4(d), which shows all �170
data sets. We emphasize the remarkable role that �ð�AÞ
plays and the fact that it is independent of �.

We then consider what determines n0. Equation (2)
implies that n0¼nexp½�PðnÞ=�ð�AÞ�. Initially, at n¼1,
�P ¼ �P0. According to the approximately quadratic
relation between P and �, �P0 is given by �P0 ¼
Rð�Þð�2

max � �2
minÞ=2 ¼ Rð�Þ ���A. Therefore,

n0 ¼ exp

�
Rð�Þ �� �A

�ð�AÞ
�
: (3)

Equation (2) also implies an evolution d�P=dn ¼
��n�1

0 expð�P=�Þ or, with a cutoff, d�P=dn ¼
��n�1

0 ½expð�P=�Þ � 1�, which produces the logarithmic

form of Eq. (2) for small n, with saturation at n ¼ n0. This
suggests an activated process, perhaps involving a

generalized ensemble, such as the stress ensemble, as
discussed by several authors [14–17].
To summarize, for frictional granular systems in or near

the shear jamming regime, �S � � � �J, we generated
sheared states without shear bands, even with large strains
or over many cycles of shear, making it possible to experi-
mentally probe the constitutive relations of granular mate-
rials. These experiments show two key and highly novel
results. (1) We find a novel Reynolds effect for fixed� that
is approximately quadratic in � using R ¼ ð@2P=@�2

j�Þ=2.
We note that the specific form for Rð�Þmay well depend on
the particle interaction force; a more general form might be
P ¼ R��, where, for our experiments, � ’ 2. (2) We find
that, under cyclic shear, frictional granular systems evolve
logarithmically slowly, as one might expect for an acti-
vated process, toward a state where the pressure is sym-
metric, modulo fluctuations, about the midpoint of strain.
The pressure at the symmetry point may not be zero. This
slow evolution is characterized by highly novel scaling
behavior, such that there is good collapse of all data.
These results point toward several interesting directions.

First, it is reasonable to search for a description of these
states in terms of an ensemble picture, such as the stress
ensemble, given the activated process character of the slow
relaxation. Such a theory would need to explain some of
the striking scaling properties observed here. In addition,
we have not considered the properties of the shear stress
under cyclic shearing, nor have we considered the particle
dynamics of details of the force or contact networks. We
will present these results elsewhere.
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Rev. Lett. 78, 2020 (1997); P. Sollich, Phys. Rev. E 58, 738
(1998); P. Sollich and M. E. Cates, Phys. Rev. E 85,
031127 (2012).

PRL 110, 018302 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

4 JANUARY 2013

018302-5

http://dx.doi.org/10.1103/PhysRevLett.82.5241
http://dx.doi.org/10.1103/PhysRevLett.82.5241
http://dx.doi.org/10.1103/PhysRevLett.87.035506
http://dx.doi.org/10.1103/PhysRevLett.87.035506
http://dx.doi.org/10.1063/1.3664407
http://dx.doi.org/10.1063/1.3664407
http://dx.doi.org/10.1143/PTPS.184.16
http://dx.doi.org/10.1143/PTPS.184.16
http://dx.doi.org/10.1007/s10035-011-0306-z
http://dx.doi.org/10.1007/s10035-011-0306-z
http://dx.doi.org/10.1103/PhysRevLett.106.108301
http://dx.doi.org/10.1103/PhysRevLett.106.108301
http://dx.doi.org/10.1103/PhysRevLett.101.268301
http://dx.doi.org/10.1103/PhysRevLett.95.198002
http://dx.doi.org/10.1103/PhysRevLett.95.198002
http://dx.doi.org/10.1103/PhysRevLett.99.038002
http://dx.doi.org/10.1103/PhysRevLett.78.2020
http://dx.doi.org/10.1103/PhysRevLett.78.2020
http://dx.doi.org/10.1103/PhysRevE.58.738
http://dx.doi.org/10.1103/PhysRevE.58.738
http://dx.doi.org/10.1103/PhysRevE.85.031127
http://dx.doi.org/10.1103/PhysRevE.85.031127

