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The helical edge state of a quantum spin-Hall insulator can carry a supercurrent in equilibrium between

two superconducting electrodes (separation L, coherence length �). We calculate the maximum (critical)

current Ic that can flow without dissipation along a single edge, going beyond the short-junction restriction

L � � of earlier work, and find a dependence on the fermion parity of the ground state when L becomes

larger than �. Fermion-parity conservation doubles the critical current in the low-temperature, long-

junction limit, while for a short junction Ic is the same with or without parity constraints. This provides a

phase-insensitive, dc signature of the 4�-periodic Josephson effect.

DOI: 10.1103/PhysRevLett.110.017003 PACS numbers: 74.45.+c, 71.10.Pm, 74.78.Fk, 74.78.Na

The quantum Hall effect and quantum spin-Hall effect
both refer to a two-dimensional semiconductor with an
insulating bulk and a conducting edge, and both exhibit a
quantized electrical conductance between two metal elec-
trodes. If the electrodes are superconducting, a current can
flow in equilibrium, induced by a magnetic flux without
any applied voltage. In the quantum Hall effect, the edge
states are chiral (propagating in a single direction only)
and two opposite edges are needed to carry a supercurrent
[1–3]. Graphene is an ideal system to study this interplay
of the Josephson effect and the quantum Hall effect in a
strong magnetic field [4–6].

The interplay of the Josephson effect and the quantum
spin-Hall effect, in zero magnetic field, has not yet been
demonstrated experimentally but promises to be strikingly
different [7]. The quantum spin-Hall insulator has helical
edge states (propagating in both directions) that can carry a
supercurrent along a single edge. The edge state couples a
pair of Majorana zero modes, allowing for the transmission
of unpaired electrons with h=e rather than h=2e periodic
dependence on the magnetic flux [8,9].

An h=e flux periodicity corresponds to a 4� periodicity
in terms of the superconducting phase difference �, which
means that the current-phase relationship has two branches
I�ð�Þ and the system switches from one branch to the
other when� is advanced by 2� at a fixed total numberN
of electrons in the system. This is referred to as a fermion-
parity anomaly, because the two branches have different
parity � ¼ � of the number of electrons in the super-
conducting ground state [8].

Josephson junctions come in two types [10], depending
on whether the separation L of the superconducting elec-
trodes is small or large compared to the coherence length
� ¼ @v=�, or equivalently, whether the superconducting
gap � is small or large compared to the Thouless energy
ET ¼ @v=L. Existing literature [7–9,11–18] has focused
on the short-junction regime L � �. The supercurrent
is then determined entirely by the phase dependence of a

small number of Andreev levels in the gap, just one per
transverse mode. The phase dependence of the continuous
spectrum above the gap can be neglected. As the ratio L=�
increases, the Andreev levels proliferate and also the con-
tinuous spectrum starts to contribute to the supercurrent.
Since � is switched by changing the occupation of a single
level, one might wonder whether a significant parity de-
pendence remains in the long-junction regime.
Remarkably enough, the parity dependence becomes

even stronger. While in a short junction the two branches
Iþð�Þ ¼ �I�ð�Þ differ only in sign, we find that in a long
junction they differ both in sign and in magnitude. In
particular, the largest current that can flow without dissi-
pation is twice as large for I� as it is for Iþ. The difference
is illustrated in Fig. 1, in the zero-temperature limit. The
basic physics can be explained in simple terms, as we will
do first, and then we will present a complete theory for a
finite temperature and for an arbitrary ratio L=�.
We set the stage by summarizing the findings of Fu and

Kane [7] in the short-junction regime. The spectrum of the
Bogoliubov–de Gennes Hamiltonian HBdG is a �" sym-
metric combination of a discrete spectrum for j"j<� and
a continuous spectrum for j"j> �. Since backscattering
along the quantum spin-Hall edge is forbidden by time-
reversal symmetry [19], this is a ballistic single-channel
Josephson junction. In the limit L=� ! 0 the discrete spec-
trum consists of a pair of levels at "�¼��jcosð�=2Þj,
while the continuous spectrum is� independent [20]. Quite
generally, an eigenvalue "ð�Þ of HBdG contributes to the
supercurrent an amount

Ið�Þ ¼ ge

@

d

d�
"ð�Þ; (1)

with g a factor that counts spin and other degeneracies [21].
There is no spin degeneracy at the quantum spin-Hall edge
(since spin is tied to the direction of motion), so g ¼ 1 and
the level "� contributes a supercurrent [7]
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I�ð�Þ ¼ � e�

2@
sin ð�=2Þ; j�j<�: (2)

To discuss the fermion-parity anomaly we assume, for
definiteness, that the total number N of electrons in the
system is even. (A different choice amounts to a 2� phase
shift, or equivalently, an interchange of Iþ and I�.)
The ground-state fermion parity � is even for � ¼ 0 and
switches to odd when � crosses �. Since N is fixed, this
topological phase transition must be accompanied by a
switch between an even and odd number of quasiparticle
excitations. At zero temperature, only the two levels "�
closest to the Fermi level (" ¼ 0) play a role, and the parity
switch of � means that a quasiparticle is transferred from
"þ < 0 to "� > 0. It cannot relax back from "� to "þ at
fixed parity of N .

The resulting current-phase relationship can be repre-
sented by a switch between 2�-periodic branches I�ð�Þ
(reduced zone scheme), or equivalently as a 4�-periodic
function I4�ð�Þ (extended zone scheme). Both represen-
tations are shown in Fig. 1, upper panels. We also include
the 2�-periodic current I2� that results if the system can
relax to its lowest energy state without constraints on the
parity of N .

So much for the short-junction limit. An elementary
discussion of the long-junction regime (to be made rigor-
ous in just a moment) goes as follows. For L � � we may
assume [22–24] a local linear relation between the current
density I and the phase gradient �=L � 1=�, of the form
I¼ const�ev�=L. The linear increase of I� is interrupted

at � ¼ 0 by a discontinuity �I� ¼ 2ev=L. Half of it
results from the jump in the slope of the lowest occupied
positive energy level " ¼ ð�� j�jÞ@v=2L [green arrows
in Fig. 1(e)]. The jump in the slope of the highest occupied
negative energy level contributes the other half. In the
extended zone scheme, the resulting supercurrent I4� is a
4�-periodic sawtooth with a slope �I�=4� ¼ eET=2�@.
The corresponding parity-dependent supercurrents in

the reduced zone scheme are

Iþ ¼ eET

2�@
�; I� ¼ eET

2�@
ð�� 2� sgn�Þ; j�j<�:

(3)

The 4�-periodic supercurrent I4� switches from Iþ to I� at
� ¼ �, while I2� remains in the branch Iþ by compensat-
ing the switch in ground-state fermion parity � by a switch
in the parity of the electron number N . These are the
curves plotted in Fig. 1 (lower panels).
The maximal supercurrent is reached near � ¼ 2� for

I4� (with parity constraint) and near � ¼ � for I2� (with-
out parity constraint). There is a factor of two difference
in magnitude of these critical currents in a long junction,

I4�;c ¼ eET=@; I2�;c ¼ eET=2@: (4)

In contrast, for a short junction both are the same (equal to
e�=2@).
To determine the crossover from the short-junction limit

(2) to the long-junction limit (3), including the temper-
ature dependence, we adapt the scattering theory of the

FIG. 1 (color online). Phase-dependent excitation spectrum of a Josephson junction along a quantum spin-Hall (QSH) edge
(left panels) and corresponding zero-temperature supercurrent (right panels). The supercurrent I4� is 4�-periodic, with two branches
Iþ (blue solid), I� (red solid) distinguished by the ground-state fermion parity and with a parity switch at� ¼ ��. The top row shows
the short-junction limit of Ref. [7], the bottom row the long-junction limit calculated here. (The jump in I� at� ¼ 0 occurs because of
the change in slope indicated by the green arrows in the magnified central part of the spectrum.) The 2�-periodic supercurrent I2�
without parity constraints is also shown (green dashed). The critical current is the same for I4� and I2� in the short junction, but
different by a factor of two in the long junction.
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Josephson effect [25] to include the fermion parity con-
straints. Input is the scattering matrix s0 of electrons in the
normal region and the Andreev reflection matrix rA at the
normal-superconductor interfaces. These take a particu-
larly simple 2� 2 form at the quantum spin-Hall edge, but
our general formulas are applicable also to multichannel
topological superconductors.

The parity-dependent partition function is [12–14,26]

Z� ¼ 1

2

�Y
">0

e�"=2
��Y

">0

ð1þ e��"Þ � Y
">0

ð1� e��"Þ
�

¼ 1

2
Z0

�
1� Y

">0

tanh ð�"=2Þ
�
; (5)

with � ¼ 1=kBT and Z0 ¼
Q

">02 cosh ð�"=2Þ the parti-
tion function without parity constraints. From the expres-
sion for Z� one can see that the � selects terms that
contain an even (þ) or an odd (� ) number of quasiparticle
excitation factors e��", as is dictated by the ground-state
fermion parity. The partition function Z gives the free
energy F and hence the supercurrent I [27],

I� ¼ 2e

@

dF�
d�

; F� ¼ ���1 lnZ�; (6)

I2� � I0 ¼ 2e

@

dF0

d�
; F0 ¼ ���1 lnZ0: (7)

The density of states �ð"Þ contains both the discrete
spectrum for j"j< � (a sum of delta functions at the
Andreev levels) and the continuous spectrum for j"j> �,
including also a contribution �S from the superconducting
electrodes. Scattering theory gives the expression [25]

�ð"Þ ¼ Im
d

d"
�ð"þ i0þÞ þ �Sð"Þ; (8)

�ð"Þ ¼ ���1 lnDetXð"Þ; X ¼ ð1�MÞM�1=2; (9)

Mð"Þ ¼ r�Að�"Þs�0ð�"ÞrAð"Þs0ð"Þ: (10)

The factorM�1=2 in the definition of X, as well as the term
�S, give a �-independent additive contribution to F0 with-
out any effect on I0, but we need to retain these terms here
because they do enter into the parity constraint for I�.

In the absence of parity constraints, Ref. [28] gives the
free energy

F0 ¼ ���1
X1
p¼0

lnDetXði!pÞ; (11)

as a sum over fermionic Matsubara frequencies !p ¼
ð2pþ 1Þ�=�. A similar calculation [29] gives the parity
dependence in the form

F� ¼ F0 � ��1 ln
1

2

�
1þ �eJS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DetXð0Þp

� exp

� X1
p¼1

ð�1Þp ln DetXði�p=2Þ
��

; (12)

� ¼ sgn½PfðrAs0 � sT0r
T
AÞðDet is0Þ�1=2	"¼0; (13)

with bosonic Matsubara frequencies �p ¼ 2p�=�. The

ground-state fermion parity � is given in terms of the
Pfaffian of the antisymmetrized scattering matrix, eval-
uated at the Fermi energy. The sign ambiguity in the square
root is resolved by fixing � ¼ 1 at � ¼ 0.
Equation (12) contains a contribution from the super-

conducting electrodes,

JS ¼
Z 1

�
d"�Sð"Þ ln tanh ð�"=2Þ; (14)

which only plays a role at temperatures T * �=kB. The
factor eJS can therefore be replaced by unity in the long-
junction regime, when kBT & ET � �.
We now specify these general formulas for the quantum

spin-Hall edge, with the Hamiltonian [30]

HBdG ¼ vp�z þUðxÞ ��ðxÞ�y

�ðxÞ�y vp�z �UðxÞ
� �

: (15)

The edge runs along the x axis, p ¼ �i@@x is the momen-
tum operator, and the electrostatic potential is UðxÞ
(measured relative to the Fermi level). The pair potential
�ðxÞ vanishes in the normal region jxj<L=2. In the two

superconducting regions we set �ðxÞ ¼ �e�i�=2, with a
step at x ¼ �L=2. This so-called ‘‘rigid boundary condi-
tion’’ is justified for a single channel coupled to a bulk
superconducting reservoir [10].
Amode-matching calculation gives the scatteringmatrices

s0 ¼
0 ei�

ei� 0

 !
; �ð"Þ ¼ �0 þ "=ET; (16)

rA ¼ 	ei�=2 0

0 �	e�i�=2

 !
; 	ð"Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� "2

�2

s
þ i"

�
;

DetXð"Þ ¼ 2 cos�þ 	2e2i"=ET þ 	�2e�2i"=ET : (17)

We discuss the various terms in these expressions. The
electron scattering matrix s0 is purely off diagonal, because
of the absence of backscattering along the quantum spin-Hall
edge. The transmission phase � depends linearly on energy
because of the linear dispersion. Electrostatic potential
fluctuations contribute only to the energy-independent
offset �0 ¼ �ð@vÞ�1

R
L
0 Udx, which drops out in Eq. (9).

The Andreev reflection matrix rA (from electron to hole)
is unitary below the gap. Above the gap there is also propa-
gation into the superconductor, so rA is subunitary. The same
expression (16) for rA applies at all energies, evaluated at
"þ i0þ to avoid the branch cut of the square root.
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Putting all pieces together [29], we obtain the parity-
dependent supercurrent for arbitrary ratio �=ET. In the
short-junction limit �=ET ! 0 we recover the known
result (2), when the energy dependence of the scattering
matrix and the phase sensitivity of the continuous spectrum
can both be ignored. In the opposite long-junction limit
�=ET ! 1 we find

I4� ¼ I0 � 2e

@�

d

d�
ln

�
1

2
þ cos ð�=2ÞeS��=2�ET

�
; (18)

S ¼ X1
p¼1

ð�1Þp ln ð1þ 2e��p=ET cos�þ e�2�p=ETÞ; (19)

I2�� I0¼ 2e

@�
sin�

X1
p¼0

½cos�þcoshð2!p=ETÞ	�1: (20)

The plot of the results in Fig. 2 shows that the crossover
from a sine to a sawtooth shape occurs early: already for
� ¼ ET (so for L ¼ �) the maximum of the current-phase
relationship is close to � ¼ 2�. The sawtooth shape is
preserved with increasing temperature for kBT & 1

2ET.

These are encouraging results for the experimental ac-
cessibility of the long-junction regime. The quantum spin-
Hall effect has been observed in HgTe=CdTe quantum
wells [31], and more recently in InAs=GaSb quantum wells
[32]—where also Andreev reflection from superconduct-
ing Nb electrodes was demonstrated [33]. For a typical
Fermi velocity of v ’ 105 m=s in a semiconductor and
superconducting gap � ’ 1 meV in bulk Nb, the coher-
ence length is � ¼ 70 nm, so the Josephson junction length
L ¼ 0:5 
m from Ref. [33] is deep in the long-junction

regime. Since the long-junction regime is already entered
for L 
 �, this would apply even if the effective super-
conducting gap is well below the bulk value of Nb. The
corresponding Thouless energy is ET=kB ¼ 1:5 K, so at
T ¼ 100 mK one should be close to the low-temperature
limit.
In the ongoing search for the 4�-periodic Josephson

effect the first results have been reported [34] for the ac
effect (fractional Shapiro steps [9,15–18]). A dc measure-
ment of the current-flux (I-�, � ¼ 2e�=@) relationship,
for times large compared to the time �qp ’ 
s for unpaired

quasiparticles to tunnel into the system [35], will measure
the 2� periodic I2� rather than I4�. Such a phase-sensitive
measurement (Fig. 2, upper inset) would produce the
critical current I2�;c without any signature of the parity

anomaly. In contrast, a phase-insensitive measurement of
the critical current through the current-voltage (I-V) char-
acteristic (lower inset) will produce I4�;c even on time

scales � �qp, because the phase of a resistively shunted

(overdamped) circuit can adjust to a change inN on time
scales much smaller than �qp. A change in the parity ofN
will be compensated by a 2� phase shift, without a change
in critical current [29]. In a short junction, I2�;c and I4�;c
are the same, so this does not help, but in a long junction
they differ by up to a factor of two.
In conclusion, we have presented a theory for the

4�-periodic Josephson effect on large scales compared
to the superconducting coherence length. A multitude of
subgap states, as well as a continuum of states above the
gap, contribute to the supercurrent for L � �, but still the
parity anomaly responsible for the 4� periodicity persists.
In fact, we have found that in a long junction the anomaly
manifests itself also in a phase-insensitive way, through a
doubling of the critical current. This opens up new possi-
bilities for the detection of this topological effect at the
quantum spin-Hall edge [31–33], and possibly also in
semiconductor nanowires [34,36–41].
Discussions with A. R. Akhmerov are gratefully
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