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The application of spatially uniform light on conventional insulators can induce Floquet spectra with

characteristics akin to those of topological insulators. We demonstrate that spatial modulation of light

allows for remarkable control of the properties in these systems. We provide configurations to generate

one-dimensional bulk modes, photoinduced currents, as well as fractionalized excitations. We show a

close analogy to p-wave superconductors and use this analogy to explain our results.
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The quantum Hall effect [1] lead to the discovery of a
close connection between topology and certain physical
properties of condensed matter systems [2–4]. Our under-
standing of the role of topology has greatly expanded
following the recent discovery of new classes of topologi-
cal phases and of new materials displaying topological
properties [5–12]. Topological phases are characterized
by integer-valued numbers that are invariant to small
changes of their Hamiltonian. This makes intriguing ef-
fects, such as quantized Hall conductivity and non-Abelian
excitations, robust properties of these systems [1,13–15].

Recently, it has been shown that topological properties can
be induced in conventional insulators by the application of
time-periodic perturbations [16–22]. Proposals for these so-
called ‘‘Floquet topological insulators’’ (FTIs) include a
wide range of physical solid state and atomic realizations,
driven both at resonance and off-resonance. These systems
displaymetallic conduction enabledbyquasistationary states
at the edges [16,17,20], Dirac cones in three dimensional
systems [21], and even Floquet Majorana fermions [22].

In this Letter, we demonstrate dramatic effects that arise
in FTIs when light is modulated in space. Nonuniform light
can give rise to controlled one-dimensional modes in the
bulk, to fractionalized excitations, and to photoinduced
electric currents. We establish these results both numeri-
cally and analytically. We show that the Floquet spectrum
resembles that of a p-wave superconductor with a spatially
modulated order parameter. This analogy provides a sim-
ple description of the mechanism behind our results. We
propose setups by which the properties of light-induced
topological phases can be controlled. For example, by
modifying the angle of incident light on a system one
can set the density of one-dimensional modes in its bulk.

We begin by building a description of FTIs in a generic
zinc blende lattice model. The unperturbed system is given
by the Bloch Hamiltonian

Hk ¼
~Hk 0
0 ~H�

�k

 !
: (1)

This can describe, for example, HgTe quantum wells, in
which case ~Hk [( ~H�

�k)] is a 2� 2 Hamiltonian acting on

the subspace spanned by the Jz ¼ ð12 ; 32Þ [Jz ¼ ð� 1
2 ;� 3

2Þ]
states, respectively. Thus, the two blocks in Eq. (1) are
related to each other by time reversal symmetry. Most
generally, one can write

~H k ¼ ~dk � ~�þ "kI2�2: (2)

We consider time-dependent perturbations that do not
connect the two Hamiltonian blocks, and perform the
analysis on a single block. For example, we will study
the 2� 2 Hamiltonian

~HlinðtÞ ¼ ~dk � ~�þ "kI2�2 þ ~Vk � ~� cosð!tþ �Þ; (3)

where ~Vk can depict the effect of shining linearly polarized
light on the sample [20].
The solutions of the Schrödinger equation for a

time-dependent system evolve according to c ðt0Þ ¼
Uðt0; tÞc ðtÞ, where U is the time evolution operator

Uðt0; tÞ ¼ T

�
exp

�
�i

Z t0

t
Hðt00Þdt00

��
: (4)

For a time-periodic system, Floquet’s theorem states that
these solutions can be written as c ðtÞ ¼ P

ae
i"at’aðtÞ,

where ’aðtÞ ¼ ’aðtþ �Þ and � ¼ 2�
! [23]. The "a are

called quasienergies, and are only defined modulo !; the
’aðtÞ satisfy the eigenvalue problem HF’aðtÞ ¼ "a’aðtÞ,
where HF is the Floquet Hamiltonian, obtained from the
time evolution operator over a full cycle

e�iHF� � Uð�; 0Þ: (5)

For a 2� 2 block, HF can be written most generally as

HF ¼ ~nk � ~�þ "kI2�2: (6)

This has the structure of a gapped system provided that ~nk
does not vanish on the Brillouin zone. We then introduce a
topological invariant [7,9]

CF ¼ 1

4�

ZZ
BZ

d2kð@kx n̂k � @ky n̂kÞ � n̂k; (7)

where n̂k ¼ ~nk=j ~nkj. CF can be nontrivial even when the
unperturbed system is topologically trivial [20]. As a
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consequence, the time-dependent perturbation can give
rise to topologically protected edge states in HF.

The Floquet spectrum is independent of the value of
� 2 ½0; 2��. To see this, note that a shift in � results in

U�ð�; 0Þ ¼ WyU�¼0ð�; 0ÞW, where W ¼ Uy
�¼0ð�! ; 0Þ.

Thus, changing � is equivalent to a similarity transforma-
tion of HF, HFð�Þ ¼ WyHFð0ÞW. The spectrum of HF is
therefore independent of �, even if its eigenstates are not.
In particular, varying � cannot induce a gap closure, nor
change CF. Naively, this implies that at the interface
between two portions of the sample with different values
of �, no edge modes are expected in the Floquet spectrum.
However, we’ll show below configurations in which local-
ized modes appear at such an interface. At first glance this
is remarkable, since the interface connects two systems
with identical topological classification.

Lattice model.—We first demonstrate the existence of
quasistationary interface modes in a lattice model.
Consider the time-independent Hamiltonian, Eq. (2), with

~dk ¼ ðA sinkx; A sinky;Mþ 2Bðcoskx þ cosky � 2ÞÞ:
(8)

We choose "k ¼ 0. Then Eq. (2) has particle-hole symme-
try (PHS) in which the valence and conduction bands are
interchanged. We add a time-dependent perturbation

V ¼ V0�z cosð!tþ �Þ: (9)

We evaluate the time evolution operator numerically,
Eq. (4), by discretizing the time interval between t ¼ 0
and t0 ¼ � � 2�

! . We then obtain the Floquet spectrum by

diagonalizing U; see Eq (5). When � is a constant, the
system has translational invariance and ~nk can be calcu-

lated for each ~k separately. Fig. 1 shows that n̂k wraps
exactly one time around the unit sphere over the first
Brillouin zone. The system is therefore topologically non-
trivial with CF ¼ 1, and we expect one localized chiral
mode at each edge of the system. To demonstrate this, we
choose cylindrical geometry with open boundaries in the y
direction and periodic boundaries in the x direction.

Figure 2 shows that indeed, one zero quasienergy mode
exists at each boundary of the system. This corresponds to
the edge state found in Ref. [20].
We now allow � to be position dependent. As a first

example, we consider a domain wall configuration, across
which the external perturbation changes sign, �ðyÞ ¼
��ðyÞ. This captures the phase shift across the nodes of a
standing wave created by two interfering light rays incident
on the sample. By adjusting the incidence angle of the rays,
one can control the periodicity of the standing wave such
that these nodes are well separated. We choose cylindrical
geometry. Since the system remains translationally invari-
ant along x, we work in the hybrid coordinate basis ðkx; yÞ
and diagonalize U for each kx value. Figure 2 shows the
resulting quasienergy spectrum. Note that, in addition to
the edge modes, the spectrum now includes two counter-
propagating zero quasi-energy modes localized near the
domain wall at y ¼ 0.
As a second example, we consider a vortex configura-

tion, in which the phase � winds by 2� about a point,
�ð ~rÞ ¼ arctanðy=xÞ. A lattice of such vortices can be cre-
ated by interfering three lasers, and an isolated vortex can
be created using a phase mask. We set open boundaries and
diagonalizeU in real space to obtain the Floquet spectrum.
In addition to the edge modes, we find a zero quasienergy
state bound to the vortex. Figure 3 shows the wave function
of the bound state. This state hybridizes with an edge state
and opens a small gap. However, this is a finite-size effect,
and the gap energy decays exponentially with system size.
Analogy to px þ ipy superconductors.—In order to

explain these results, we establish an analogy between
our system and a px þ ipy superconductor (pSC). We

then relate the domain wall and vortex core states to the
well-known zero energy states of pSCs.
We derive an approximate analytic expression for HF.

The derivation is first carried out for constant �. We start

by omitting the component of ~Vk parallel to d̂k, since it
only affects the dynamics weakly when averaged over a
full cycle and is known not to influence the topological
properties of the system [20]. The remaining perpendicular

FIG. 1 (color online). ~nk, defined in Eq. (6), for the lattice
model, Eqs. (8) and (9), with � ¼ 0. (a) x and y components of
~nk. (b) n

z
k. Note that ~nk is in a hedgehog configuration, as it wraps

the unit sphere exactly once. This corresponds to CF ¼ 1. The
dashed lines depict the range [� k0, k0] over which C0

kx
� 0.

FIG. 2 (color online). (a) Floquet spectrum of Eq. (3) for a
domain wall configuration. The plotted range corresponds ap-
proximately to [� k0, k0]. (b) Amplitude of the localized bulk
(red) and edge (blue) states. Inset: Floquet spectrum for constant
�. Results are for V0 ¼ A ¼ �B ¼ 0:2M, ! ¼ 2:7M.
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component is ~Vk;? ¼ ~Vk � ð ~Vk � d̂kÞd̂k. We define Vk;? �
j ~Vk;?j and introduce v̂k ¼ ~Vk;?=Vk;? and ŵk ¼ d̂k � v̂k,

such that d̂k, v̂k and ŵk form a right-handed triad. The
perturbation can be decomposed into terms that rotate and

counterrotate about d̂k,

~H k � ~dk � ~�þ 1

2
Vk;?ðv̂k cos!tþ ŵk sin!tÞ � ~�

þ 1

2
Vk;?ðv̂k cos!t� ŵk sin!tÞ � ~�:

We go to a rotating frame through the time-dependent

unitary transformation RðtÞ ¼ expð�id̂k � ~� !t
2 Þ. The

resulting states jc ðtÞir ¼ RðtÞjc ðtÞi satisfy i@tjc ðtÞir ¼
~H0jc ðtÞir, where ~H0 ¼ Ryð ~H� iI@tÞR. We then find

~H 0
k ¼

h
~dk �!

2
d̂k þ 1

2
Vk;?ðv̂k cos�þ ŵk sin�Þ

i
� ~�

þ 1

2
Vk;?½v̂k cosð2!tþ�Þ � ŵk sinð2!tþ�Þ� � ~�:

The rotating wave approximation (RWA) consists of
neglecting the 2! term in ~H0

k. This is valid near a reso-
nance, j!��Ej � !þ�E, where �E is the energy
difference between states in the lower and upper bands.
This procedure yields a time-independent operator

HRWA
F;� ¼

h�
1� !

2dk

�
~dk þ 1

2Vk;?ðv̂k cos�þ ŵk sin�Þ
i
� ~�;

(10)

which is the Floquet Hamiltonian in the RWA.
The analogy to a pSC can be seen explicitly by perform-

ing a k-dependent unitary transformation that rotates

ðd̂k; v̂k; ŵkÞ ! ðẑ; k̂; ẑ� k̂Þ, where ~k ¼ ðkx; kyÞ. This leads
to a Hamiltonian of the form

H0
F ¼ �k �ke

�i�ðkx � ikyÞ
�ke

i�ðkx þ ikyÞ ��k

 !
; (11)

where �k ¼ dk �!=2 and �k ¼ Vk;?=2k are real.

Equation (11) resembles the Hamiltonian of a pSC with
complex order parameter �ke

�i�. The analogy to the pSC

can be seen graphically in Fig. 1, where panel (a) depicts
the normal dispersion and panel (b) the superconducting
order parameter, which is seen to have px þ ipy symmetry.

Note that, unlike an actual superconductor in which the
Nambu basis describes particle and hole states, here
Eq. (11) acts on two particlelike states corresponding to
valence and conduction bands of the Floquet problem.
Hence, the spectrum of Eq. (11) matches the corresponding
pSC, but the nature of the wave functions in the two cases
is related by a particle-hole transformation.
We apply these results to our system. The unperturbed

Hamiltonian for small ~k is ~Hk ¼ A ~k � ~�þM�z. The
Floquet Hamiltonian in the RWA is then

HRWA
F;� ¼

h
�
�
ẑþ A

M
~k
�
þ�0ð ~k cos�þ ẑ� ~k sin�Þ

i
� ~�;

where � ¼ ðM� !
2Þ and �0 ¼ AV0

2M . When � varies in

space, this is generalized to a Bogoliubov—de Gennes
(BdG) equation [here c ¼ ðu; vÞT]

ð"� �Þu ¼
�
A

M
���ð~rÞ

�
� ð�i@x þ @yÞv;

ð"þ �Þv ¼ ð�i@x � @yÞ �
�
A

M
�� ��ð~rÞ

�
u;

(12)

where � denotes the symmetric product a � b ¼ 1
2 ðabþ

baÞ. In theories of superconductivity the gap function �ð ~rÞ
is calculated self-consistently. Here, �ð ~rÞ is directly deter-
mined by the external perturbation.
When �ð ~rÞ describes a vortex, the BdG equation has a

zero energy solution bound to the vortex core. This state is
analogous to the well-known pSC vortex core modes, and
just as in the case of a pSC, it is topologically protected
provided particle-hole symmetry is present [24,25]. This
gives a fractional charge of 	1=2 at the vortex, depending
on whether the state is occupied or not [26]. In the full 4�
4 system, the vortex is felt in both subspaces, yielding two
zero energy states which can be independently occupied.
This leads to fractionalized excitations (	 1=2, 	1=2),
where the indices denote the charge in each subspace.
The scenario is closely analogous to fractionalization in
polyacetylene, where fractional charge excitations in the
spin-up and spin-down channels combine into spin 1=2
excitations with integer charge [27].
When �ð~rÞ describes a domain wall, the BdG equation

has two zero quasienergy solutions, localized around y ¼ 0
with a localization length of � ¼ �

�0
. This configuration is

analogous to an interface between two pSCs with a relative
phase difference of �—a ‘‘� junction’’—which is known
to have zero energy bound Andreev states [25,28]. To
understand these modes, let us first consider a system
with no disorder and no interactions. Then kx is a good
quantum number and the system reduces to a 1D pSC for
each kx. We can then define a kx-dependent topological
invariant, C0

kx
, as the winding number of n̂k in the (nyk, n

z
k)

FIG. 3 (color online). Amplitude of the vortex bound state.
Inset: quasienergy of the state as a function of the system size L.
Results are for V0 ¼ 1:5M, A ¼ 0:2M, B ¼ �0:1M, ! ¼ 2:7M.
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plane. As can be seen from Fig. 1, when� ¼ 0 the 1D pSC
is topological with C0

kx
¼ 1 for kx 2 ½�k0; k0� and it is

trivial otherwise. On the other side of the domain wall,
� ¼ �, and the sign of C0

kx
is reversed. For kx 2 ½�k0; k0�

the change in sign in C0
kx
implies a pair of localized states

exists at the interface, which disperse in opposite directions
as a function of kx. In particular, at kx ¼ 0 these modes
cross with zero quasienergy. When PHS is present, one of
these states is even under the PH transformation, whereas
the other is odd, preventing them from mixing and open-
ing up a gap. This protection is robust even in the pres-
ence of disorder and interactions, provided these do not
break PHS.

Note that the domain wall and vortex configurations are
closely related. To see this, we write �ð ~rÞ ¼ arctanðy=	xÞ,
which describes a vortex for 	 ¼ 1 and a domain wall for
	 ! 0þ. Thus, the domain wall is a continuous deforma-
tion of a vortex and the � jump arises from the vortex
winding. The interface modes are therefore smoothly con-
nected to the vortex core states.

Photoinduced current.—Recall that imposing a phase

twist on a superconductor �ei�ð ~rÞ results in a Josephson

current ~jS ¼ 
s
~r� [29]. Motivated by the analogy to pSC,

we consider the effect of a slowly varying phase twist
�ðyÞ ¼ �0 þ y@y�, where @y� is a small constant. This

can be achieved, for example, by shining a coherent light
ray incident at an angle to the surface of the sample.
Indeed, we find that the system experiences a dc current
along ŷ, and compute an analogue of the superfluid stiff-

ness 
s in terms of the vectors ~dk and ~nk.
By Noether’s theorem, the current density operator is

~j ¼ � ~rkð ~dk � ~�Þ; (13)

where ~rk ¼ ð@kx ; @kyÞ. Our goal is to compute the expec-

tation value of Eq. (13) with respect to the state at half-
filling, in which all eigenstates in the Floquet valence band
are fully occupied,

h ~ji ¼ X
c k

rhc kjRðtÞĵRyðtÞjc kir; (14)

where the sum is over all the negative quasienergy states.

Here, we insertRðtÞ ¼ expð�id̂k � ~� !t
2 Þ since the current is

computed in the lab frame.
In order to derive an expression for the current, we

compute HF to linear order in @y� in the RWA. We obtain

HF ¼ HRWA
F;�0

þ ð@y�ÞHRWA
1 , where HRWA

F;�0
is given by

Eq. (10) and

HRWA
1 ¼ y

4
Vk;?ðcos�0ŵk � sin�0v̂kÞ � ~�þ H:c:

We then write jc kir ¼ jc 0
kir þ @y�jc 1

kir, where jc 0
kir are

eigenstates of HRWA
F;�0

, and jc 1
kir is obtained from 1st order

perturbation theory. The resulting current, to Oð@y�Þ,
vanishes along x̂, while along ŷ it is

hjyi
@y�

¼ RR
d2k
ð2�Þ2

V0

nk
ðd̂k �rk

~dkÞ � v̂krhc 0
kji@

$jc 0
kir;

where hc j@$jc i ¼ hc j@c i � h@c jc i. In this expression,
we have summed over the contributions coming from both
sub-Hamiltonians, ~Hk and ~H�

�k, appearing in Eq. (1). In

terms of ~dk and ~nk, this can be rewritten as

hjyi
@y�

¼ RR
d2k
ð2�Þ2

V0

2
dk
nk

n̂z
n̂2xþn̂2y

½ðd̂k � @ky n̂kÞ � ẑ�2; (15)

where dk ¼ j ~dkj and nk ¼ j ~nkj.
Integrating Eq. (15) over the Brillouin zone gives a

nonzero dc current. As a check of our analysis, we com-
pared these results with numerical simulations on the
lattice model and found good agreement. This result is
reminiscent of the photogalvanic effect proposed to exist
at the surface of 3D topological insulators radiated with
circularly polarized light [30].
Discussion.—The analogy to pSC relies on particle-hole

symmetry. Thus, it is natural to ask which of our results
rely on this symmetry. For instance, Eq. (15) for the photo-
induced current is valid even when PHS is broken. In
contrast, PHS plays an important role in preventing the
interface modes from opening a gap, as discussed above.
For real systems PHS is only approximate, and we must
consider the effects of weak PHS breaking. We find that
this induces a small mixing of the interface modes. For
example, using the same parameters as in Fig. 2, but adding
a PHS breaking term to Eq. (3) of the form "k ¼
�0:2ðcoskx þ cosky � 2Þ, we find that a small gap �
10�5 opens up. Thus, experiments carried out at tempera-
tures above this gap will not be sensitive to PHS breaking.
The vortex core state shows higher degree of robustness to
breaking of PH symmetry. Although PH symmetry break-
ing shifts the bound state quasienergy away from zero, it
remains a midgap state provided the symmetry is weakly
broken. In particular, the fractional nature of the excitation
is unaffected.
We now briefly discuss the physical manifestations of

our results in realistic systems. Earlier work has shown that
resonantly-driven systems can reach a steady state, with
occupation given by the Fermi-Dirac distribution based on
the Floquet spectrum, and with an effective temperature
that is determined by interaction and phonon relaxation
rates [31,32]. Then, a standing wave pattern is expected to
create one dimensional channels along the domain walls
and thus induce anisotropic conductivity. It may be pos-
sible to generalize our results to systems in which the light
frequency exceeds the bandwidth (that is, systems that are
driven off-resonance). The advantage of doing this is that
physical properties of systems driven off-resonance are
much easier to understand [16,17,33]. Modulated FTIs
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driven off-resonance, and in three dimensions, will be
discussed in future work.

In conclusion, we provided a set of schemes by which
the properties of Floquet topological insulators can be
manipulated using modulated light. We proposed explicit
setups by which bulk 1D channels, fractionalized excita-
tions, and light induced currents can be generated. Our
analysis demonstrates the great potential for tunability and
control of light-induced topological phases.
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