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The nonlinear conductance of semiconductor heterostructures and single molecule devices exhibiting

Kondo physics has recently attracted attention.We address the observed sample dependence of themeasured

steady state transport coefficients by considering additional electronic contributions in the effective low-

energymodel underlying these experiments that are absent in particle-hole symmetric setups.A novel version

of the superperturbation theory of Hafermann et al. in terms of dual fermions is developed, which correctly

captures the low-temperature behavior. We compare our results with the measured transport coefficients.
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Quantum matter out of equilibrium is currently inves-
tigated in a wide range of settings ranging from cold atom
setups and light-matter systems to various condensed
matter systems. Depending on the context, the focus ranges
from thermalization of quantum matter to the description
of relaxation processes to the microscopic characteriza-
tion of nonthermal steady states. In condensed matter
systems, with couplings to well-defined heat and particle
reservoirs, current-carrying steady states are of particular
interest [1,2].

In this Letter, we are concerned with the nonlinear
conductance of a model system of strong electron-electron
interaction. Traditionally, the calculation of transport prop-
erties on the basis of the fluctuation-dissipation theorem is
fairly well developed. Yet, no generally valid method exists
to go beyond the linear-response regime, as e.g., a
Boltzmann equation based approach relies on well-defined
quasiparticles and relaxation-time-like approximations. Of
particular current interest is therefore the effect of strong
electron-electron correlation on electrical and thermal
conductivities beyond the linear response regime. Kondo-
correlated quantum dots have served as ideal model sys-
tems to address this interplay between out-of-equilibrium
dynamics and strong correlations both experimentally
and theoretically. In equilibrium, the Kondo effect leads
to an enhancement of the linear conductance G ¼
dI=dVjV¼0 to close to twice the quantum of conductance
at sufficiently low temperatures (I is the current through
the quantum dot and V the applied bias voltage) indepen-
dent of any details of e.g., the density of states of the leads.
The fate of this universality away from equilibrium has
been the subject of intense research [3–7]. Recently, the
universal aspects of steady-state charge transport in the
Kondo regime beyond linear response through semicon-
ductor heterostructures and various single molecule de-
vices have been addressed experimentally [8–10]. It was

found that the prefactors � and � of the nonlinear con-
ductance, defined via (kB ¼ 1)

½G0 �GðT; VÞ�=ðcTG0Þ
¼
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�
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eVT
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differ significantly across different classes of devices.
Here, T is temperature, G0 ¼ GðT ! 0; V ¼ 0Þ and TK

is a dynamically generated low energy scale, i.e., the
Kondo temperature.
Our primary motivation is to address the systematic

difference between the results reported in Ref. [8]
(�G ¼ 0:1, �G ¼ 0:5) and [9] (�S ¼ 0:05, �S ¼ 0:1)
within the single-level Anderson impurity model (SIAM)
as the effective low-energy model for these devices. In the
strong coupling regime, this model is equivalent to the
Kondo model plus a potential scattering term generated
away from particle-hole (p-h) symmetry. Particle-hole
symmetry can easily be broken either locally on the device
itself [see below Eq. (2)] or in the leads connected to the
device (see below Eq. (7) [11]). Consequently, realistic
devices are generically not p-h symmetric and it is impor-
tant to understand the effect of p-h asymmetry on transport
properties. An immediate consequence of p-h asymmetry
is that the number of electrons localized on the device is no
longer fixed to be 1=2 (per spin component).
Theoretically, not much is known about � and �. A full

solution of the SIAM out of equilibrium is not available
and the calculation of these transport coefficients is chal-
lenging. Results for� obtained from exactly solvable cases
are not directly applicable [3,12]. Standard approaches,
e.g., the numerical renormalization group, yield only linear
response transport coefficients [13]. Selfconsistent meth-
ods can in principle be extended to the nonlinear response
regime. They are conserving by construction [14] but
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either fail to capture the correct ground state as, e.g., the
noncrossing approximation or the extension onto the
Keldysh contour is too involved [15]. As the potential
scatterer is a marginally irrelevant perturbation it is
expected to modify the transport coefficients but its ef-
fect should be pertubatively accessible. At p-h symmetry
� � 0:15 has been obtained independently of the amount
of asymmetry in the lead-dot coupling between the two
leads [5,16–19].

The SIAM Hamiltonian is Ĥ ¼ Ĥc þ Ĥd þ Ĥd�c,
where

Ĥc ¼
X

�¼L;R

X
k;�

�k�ĉ
y
k��ĉk��;

Ĥd ¼
X
�

Edd̂
y
�d̂� þU

�
d̂y" d̂" �

1

2

��
d̂y# d̂# �
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4
;

Ĥd�c ¼
X

�¼L;R

X
k;�

ðVk�d̂
y
�ĉk�� þ V�

k�ĉ
y
k��d̂�Þ: (2)

Here, Ĥc is the Hamiltonian for electrons in the metallic

leads labeled by � ¼ L and � ¼ R. Ĥd describes the
localized states in the dot, including the Coulomb interac-

tion, and Ĥd�c is the coupling term between the dot and the
leads. We have defined Ed ¼ �d þU=2. For the p-h sym-
metric case �d ¼ �U=2 and hence Ed ¼ 0.

Beyond setting up a systematic expansion for � and � in
terms of Ed and up to OðV2Þ, we also address the issue of
current conservation beyond OðV2Þ. Away from p-h sym-
metry, a proper treatment of the (renormalized) interaction
vertex is necessary to reproduce, e.g., the correct local
occupation already in equilibrium. Since, by continuity,
particle flow is connected to the rate of change of the local
occupation, any sensible approximation has to respect the
corresponding symmetries of the interaction vertex in order
to be current-conserving [14]. As discussed by Hershfield
et al. [21], for perturbation theory inU, steady state current
conservation holds only in the p-h symmetric SIAM. We
therefore develop an approach to transport in the p-h
asymmetric SIAM based on dual fermions [22] that is
based on perturbation theory in U for the p-h symmetric
SIAM [5,20,23,24]. As demonstrated explicitly, our results
are rigorous up to OðV2Þ and are current conserving
[beyond OðV2Þ]. As the p-h symmetric SIAM includes
Coulomb interactions, the expansion around it is delicate.
We use the dual fermion method [25,26] which yields a
formal expansion built around the four-point vertex of the
reference system with Ed ¼ 0. This systematically extends
the work of Yamada and Yosida and Zlatić and Horvatić to
the asymmetric SIAM [20,24,27–29] and results in a con-
trolled expansion for the transport coefficients up to, and
including, OðU2E2

dÞ. A generalization to higher orders is

possible [30].
The generating functional on the Keldysh contour is

given by

Z ¼
Z

D½ĉ y; ĉ �D½�̂y; �̂�eiS½ĉ y;ĉ ;�̂y;�̂�; (3)

where the action on the Keldysh contour is expressed in terms
of a functional integral over time-dependentGrassmannfields,

ĉ y
k��ðtÞ ¼ ðc�k��ðtÞ; cþk��ðtÞÞy and �̂yðtÞ ¼ ðd�� ðtÞ; dþ� ðtÞÞy.

Here, the indices � refer to the time-ordered (�) and
anti-time-ordered (þ) path along the closed Keldysh con-
tour. Each lead (L=R) is taken to be in equilibrium and
characterized by its temperature (TL ¼ TR ¼ T) and its
chemical potential (�L=�R).
The lead electrons are noninteracting and the resulting

Gaussian integrals can be carried out, resulting in

Z ¼
Z

D½�̂y
�!; �̂�!�eiS½�̂y

�!;�̂�!�; (4)

where the effective action S is given by
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and
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�!; �̂�!� ¼ SintU ½�̂y
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Z þ1

�1
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2�

�X
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�!½!þ ð�L þ �RÞ��̂3�̂�! (6)

is the effective action for a p-h symmetric (Ed ¼ 0) and
interacting (U � 0) system. Here,

�� ¼ �X
k;�

jVk�j2
!� �k� þ i�þ for � ¼ L; R: (7)

For simplicity, we assume that the density of states of the
left and right lead, 	�ð!Þ ¼ P

k
ð!� �k�Þ, are identical
and p-h symmetric, 	�ð!Þ ¼ 	�ð�!Þ [11]. In the wide
band limit, we set i� ¼ �L þ �R. To generate an expan-
sion in terms of Ed, we decouple the 2nd term on the right-

hand side of Eq. (5) into �y
�!g�1

�!�̂�! via a fermionic
Hubbard-Stratonovich transformation, where g�;! is the

Green’s function for the interacting (U � 0) and symmet-
ric (Ed ¼ 0) SIAM [22]. One can show [22,30]

G �;! ¼ �E�1
d �̂3 þ ðg�;!Ed�̂3Þ�1Gf

�;!ðEd�̂3g�;!Þ�1;

(8)

where G�;! is the Green’s function matrix for the interact-

ing (U � 0) asymmetric (Ed � 0) SIAM, �̂3 is the third

Pauli matrix, and Gf
�;! is the dual fermion matrix Green’s

function, obtained from the solution of the matrix Dyson
equation

Gf
�;! ¼ Gfð0Þ

�;! þGfð0Þ
�;!�

f
�;!G

f
�;!; (9)

where the bare dual fermion Green’s function is defined by

Gfð0Þ
�;! ¼ �g�;!ðg�;! � E�1

d �̂3Þ�1g�;!. The dual fermion
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self-energy �f
�;! is given in terms of g�;! and the four-

point vertex of the interacting (U � 0) and symmetric
(Ed ¼ 0) SIAM [30]. So far, no approximation has been
made and this expansion is expected to work for small as
well as large Ed [25]. We proceed by solving the reference
system (Ed ¼ 0) within the renormalized perturbation the-
ory around the strong coupling fixed point [5,23,28]. For a
systematic expansion in Ed up to OðE2

d), we keep only the

first two terms in the Dyson series forGfð0Þ
�;!. As a result, the

explicit expression for the retarded self-energy at finite bias
voltage �L ��R ¼ eV obtained from our scheme up to,
including, OðT2V2Þ, is [30,31]

�r
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�
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with ~�þþ ¼ 1þ ð3� �2=4ÞðU=��Þ2 þOðU4Þ [20,23]
and 
 ¼ 3�=ð1þ �Þ2 where � ¼ �L=�R measures the
asymmetry in the lead-to-dot couplings. Notice that there
are no terms of OðE2

dUÞ nor OðE2
dU

2Þ in Eq. (10). The

next leading correction to the retarded self-energy is
OðE3

dU; EdU
3Þ [30]. For U ¼ 0, Eq. (10) reduces to the

corresponding result of the resonant level model.
We now turn to a discussion of the current. The steady-

state current through the dot [21,32],

I¼
�
e

@

�Z þ1

�1
d!

4�R�L

�Rþ�L

½fLð!Þ�fRð!Þ�Að!;T;VÞ; (11)

follows from the continuity equation and relies on current
conservation IL þ IR ¼ 0 in the steady state to recast I
entirely in terms of the spectral density. As a result,
Eq. (11) poses a strong constraint on admissible local
distribution functions Fð!; T; VÞ, where F is defined
through G�þ ¼ Fð!; T; VÞðGa �GrÞ [30]. Here, IL=R is

the current from the left or right lead to the dot, Að!; T; VÞ
is the local spectral density (in the presence of the dot-lead
coupling) and fL=fR is the Fermi function in the left or
right lead, respectively. A second local distribution func-
tion ~Fð!; T; VÞ can be introduced via ��þ ¼
~Fð!; T; VÞð�a � �rÞ. For the SIAM considered here one
can show that Fð!; T; VÞ ¼ ~Fð!; T; VÞ in the steady state
limit. This in turn implies G�þ�þ� ¼ Gþ���þ which
ensures current conservation [21,30]. Note, that in general
one cannot conclude F ¼ ~F away from equilibrium.

Current conservation of our approach beyond OðV2Þ
follows from the general relations �þþ

Ed
þ ���

Ed
� �þ�

Ed
�

��þ
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Eq. (10) which imply
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where we introduced feffð!; T; VÞ ¼ ð�fL þ fRÞ=ð1þ �Þ.
Equation (12) shows that within our scheme Fð!; T; VÞ ¼
~Fð!; T; VÞ. The local distribution function F turns out to
be [30]

Fð!; T; VÞ ¼ �LfL þ �RfR � feffð!;T; VÞIm�r

1� Im�r : (13)

The nonlinear conductance follows from Eq. (11) and
the approximation for Að!; T; VÞ ¼ ���1ImGr, where
Gr ¼ ð!þ i�� �r

Ed
Þ�1 is the retarded Green function.

We are primarily interested in the transport coefficients in
the vicinity of the strong coupling fixed point, where our
expansion is in terms of renormalized parameters [23]. The
renormalized parameters are defined as ~�d ¼ Ed=�,
~� ¼ ~��1þþ�, ~u ¼ ~��1þþðU=��Þ. In terms of these, one finds

GðT; 0Þ �GðT; VÞ
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¼ cV
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where

GðT; V ¼ 0Þ ¼ G0
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2
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;

cT ¼ �2

3

1þ 2~u2 þ ~�2d½ð8� 5~uÞ~u� 3�
½1þ ð1� ~uÞ2~�2d�2

:

(15)

The zero-temperature linear conductance G0 ¼ ð2e2=hÞ�
4

3 ð1þ ð1� ~uÞ2~�2dÞ�1 reproduces the exact result from

Friedel’s sum rule up to Oð~u2~�2dÞ as sin2ð�ndÞ � 1�
ð1� ~uÞ2~�2d, for nd the local occupation per spin compo-

nent. For the transport coefficients in Eq. (14), we find

cV ¼ 1þ ~u2

2
� 
ð1� ~u2Þ � ~�2dð1� ~uÞHVð~u; 
Þ þOð~�4dÞ;

(16)
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�
2ð1� 
Þ þ ~u2

2
ð9� 5
Þ

�

� ~�2dð1� ~uÞHTVð~u; 
Þ þOð~�4dÞ; (17)

cVEd
¼ 2

�
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1þ �

�
ð1� ~uÞ~�d þOð~�3dÞ; (18)

cTVEd
¼ �2�2

�
1� �

1þ �

�
ð2þ 3~u2Þð1� ~uÞ~�d þOð~�3dÞ;

(19)

PRL 110, 016601 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

4 JANUARY 2013

016601-3



where we have defined the functionsHVð~u; 
Þ ¼ 5� 5~uþ
~u2 � 
ð5� 3~u� 2~u2Þ and HTVð~u; 
Þ ¼ �2½28� 16~uþ
81
2
~u2 � 
ð28� 22

3
~uþ 76

3
~u2Þ�.

In Fig. 1, we show our results for � and � for various
cuts through parameter space (~u, ~�d, �). Note, that in the
strong coupling limit (~u ! 1) the dependence on ~�d van-
ishes reflecting the fact that this limit is p-h symmetric [see
Figs. 1(a) and 1(b)]. � retains its dependence on � in this
limit while � becomes independent of � for ~u ! 1.
Figures 1(c) and 1(d) show the ratio �=�. According to
Eqs. (18) and (19) cVEd

and cTVEd
are proportional to the

product of lead-dot asymmetry � and p-h asymmetry ~�d
and hence may be small in most experimental realizations.
For the p-h symmetric case our expressions reduce to the
results of Oguri and others [5,16,17].

We are now in a position to address the experimental
results for � ¼ cV=cT and � ¼ cTV=c

2
T [8,9]. A major

experimental challenge is to reliably extract the

dynamically generated low-energy scale ~�� TK (~� ¼
4kBTK=� at ~u ¼ 1). The phenomenological formula

GðT; 0Þ ¼ G0=½1þ ð21=s � 1ÞðT=TKÞ2�s is commonly
employed to extract TK [33]. Evidently, the parameter s
fixes cT (s ¼ 0:21 as in Ref. [8] leads to cT � 5:5 and
s ¼ 0:22 [9] results in cT � 4:9). Equation (16) shows that
cT is not only a function of ~u but also depends on the p-h
asymmetry through ~�d, see Fig. 2. This complicates the
experimental extraction of TK. In theory, TK is not unique
away from p-h symmetry but will depend on the physical
quantity used for its definition.

The reported values [8,9] suggest that charge fluctua-
tions are present in both experiments and the coefficients
cVEd

and that cTVEd
are indeed vanishingly small. Yet, they

may have been detected in Ref. [9]. The experimental
values reported in Ref. [8] are compatible with, e.g., ~u ¼
0:45, ~�d ¼ 0:1, � ¼ 1 yielding � ¼ 0:1 and � ¼ 0:51.
While we can reproduce �S of Ref. [9], it is not possible
to reproduce both consistently within the SIAM. The value

�S � 0:05 is too small to be explained within the SIAM, as
the minimum value for � within the SIAM is �min¼
3=ð4�2Þ�0:076 (corresponding to ~�d¼0, ~u ¼ 0, �¼1).
The underlying low-energy model of the experiment [9]
can therefore not simply be the SIAM. One possible gen-
eralization is that more than one level participates in the
low-energy properties. Then, already G0 is no longer given
solely in terms of the occupation nd and the lead-to-dot
couplings will enter explicitly [34]. A more likely alter-
native is that local phonon modes renormalize the transport
coefficients � and � differently.
In summary, we have developed a novel analytic scheme

based on dual fermions to obtain nonlinear transport
coefficients for the Anderson model. This approach gives
a controlled expansion around the weak and strong cou-
pling fixed points even away from particle-hole symmetry
and allows for a consistent calculation of charge and
energy currents. A generalization to nonlinear magneto-
and thermal-transport properties is possible. Our scheme
thus constitutes a convenient analytic way of characteriz-
ing nanostructured devices in terms of renormalized

parameters ~u, ~�d, and �, and the low-energy scale ~� of
an underlying model. With the current interest in strongly
correlated systems away from equilibrium our approach
should prove useful as it provides controlled results against
which more general schemes [35] might be tested.
We thank D. Natelson, D. Schuricht, G. Scott, and in

particular T. Costi for many useful discussions. E.M. and
S.K. acknowledge support by the Comisión Nacional de
Investigación Cientı́fica y Tecnológica (CONICYT), Grant
No. 11100064 and the German Academic Exchange
Service (DAAD) under Grant No. 52636698.
Note added.—Recently, we became aware of Ref. [36],

which addresses the effect of p-h asymmetry on � within
a perturbation theory around the p-h asymmetric case.
A problem with this approach is that it fails to recover
p-h symmetry at ~u ¼ 1 and gives a linear in T term in the
spectral density away from half filling n ¼ 1 in contra-
diction to certain Ward identities [5].
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FIG. 1 (color online). Coefficients � (upper set) and � (lower
set) versus the different degrees of lead-to-dot asymmetry cou-
pling: � ¼ 20 (left) and � ¼ 2 (right) are compared, for different
values of particle-hole asymmetry ~�d.
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