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Excitonic effects are crucial to optical properties, and the exciton binding energy Eb in technologically

important semiconductors varies from merely a few meV to about 100 meV. This large variation, however,

is not well understood. We investigate the relationship between the electronic band structures and exciton

binding energies in semiconductors, employing first-principles calculations based on the density func-

tional theory and the many-body perturbation theory using Green’s functions. Our results clearly show that

Eb increases as the localization of valence electrons increases due to the reduced electronic screening.

Furthermore, Eb increases in ionic semiconductors such as ZnO because, contrary to the simple two-level

coupling model, it has both conduction and valence band edge states strongly localized on anion sites,

leading to an enhanced electron-hole interaction. These trends are quantized by electronic structures

obtained from the density functional theory; thus, our approach can be applied to understand the excitonic

effects in complex semiconducting materials.
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Excitonic effects in semiconductors, which are deter-
mined by not only the quasiparticle (QP) energies but
also the electron-hole interaction, play a critical role in
optoelectronic devices, such as photovoltaic cells and light
emitting diodes [1,2]. Without considering the electron-
hole interaction, the independent-QP description of optical
spectra is often significantly deviated from experimental
data [3–10]. The strength of the electron-hole interaction is
characterized by the exciton binding energy Eb, which
varies from a fewmeV to about 100meVin technologically
important inorganic semiconductors. This rather large
variation in exciton binding energy in bulk semiconductors
is not well understood from fundamental principles. Even
structurally and electronically similar materials can have
surprisingly different Eb. For example, both GaN and ZnO
have the Wurtzite structure with similar lattice constants,
band gaps (Eg ¼ 3:44 eV), and effective masses [11,12],

yet the Eb for GaN of 28 meV [13] is much smaller than
that for ZnO of 59 meV [14], despite the fact that ZnO is
more ionic. Based on the simple tight-bonding model [15],
the overlap between electron and hole in the more ionic
ZnO is expected to be less and thus ZnO should have
smaller Eb than GaN.

Understanding the variation in Eb among common semi-
conductors is, therefore, not only practically important but
also of fundamental interest. The state-of-the-art first-
principles method for electronic excitations is the many-
body perturbation theory using Green’s functions, and
accurate Eb can be obtained by solving the Bethe-
Salpeter equation (BSE) [4,16]. However, this approach
is computationally extremely demanding; furthermore,
the calculated results do not provide a simple and clear
explanation to the large variation in exciton binding
energy. Instead, electronic structures obtained from the

Kohn-Sham (KS) density functional theory (DFT)
[17,18] often give good insights to many electronic and
optical properties. Prediction of the trend in excitonic
properties using DFT is thus particularly advantageous
and convenient due to its simplicity and the tremendously
reduced computational efforts compared to the many-body
techniques.
In this Letter, we explore the relationship between exci-

ton binding energies and the localization of the KS eigen-
states. In the Tamm-Dancoff approximation to the BSE, the
exciton is a superposition of quasielectron-quasihole pairs,
with each pair interacting by the screened direct Coulomb
and bare exchange interactions. Thus, the localization and
overlap of electron and hole states is critical because of the
1=r nature of the interaction. Additionally, valence states
not explicitly participating in the exciton formation can
contribute to the screening of the interaction, and it is a
commonly held tenet that localized charge is poorer at
screening than delocalized charge. Thus, we investigate
separately the localization of the band edge states and
valence charge density, using the fact that in bulk semi-
conductors DFT valence and conduction states are good
approximation to quasihole and quasielectron states,
respectively [19,20], with QP energy corrections applied.
By solving the BSE, we rigorously study the effect of wave
function localization on exciton binding energies from a
purely ab initio framework.
Our analysis has three parts, studying separately the

localization of excitons, valence electrons, and band edge
electron and hole states. Comparison of the relative exciton
distribution, fixing hole or electron, to the binding energy
indicates that compact excitons have higher binding ener-
gies than delocalized excitons. Next, we compare localiza-
tion of excitons to localization of the valence electrons. We
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expect that a localized charge density is relatively poor at
screening; thus, charge localization should correspond to
high Eb. Determining localization of electrons in the Bloch
wave picture is tricky because the electrons are distrib-
uted periodically over all unit cells; instead, we construct
maximally localized Wannier functions ([21]) for each
valence band. The total variance of these localized orbitals
is a quantifiable measure of valence electron localization.
We find that localized electrons do, in fact, correlate with
high Eb because of their reduced screening to the electron-
hole interaction. Finally, we examine the localization of the
band edge states near ions. In contrast to the simple two-
level tight-binding picture of ionic bonding, our DFT
results indicate that ionic materials have a significant anion
contribution to the conduction band minimum (CBM)
electron state, resulting in significant overlap between the
CBM electron state and the valence band maximum
(VBM) hole state on the anion sites. The strong Coulomb
interaction between these states near the anion sites is
responsible for the tightly bound excitons for systems
such as ZnO.

Because excitons are intrinsically two-particle objects,
common independent electron methods in electronic
structure calculations are not adequate to describe their
behavior; hence, a more rigorous level of theory must be
employed. We perform electronic ground-state calcula-
tions with DFT, and then use the many-body perturbation
theory with Green’s functions (GW-BSE) on top of the KS
eigenstates. The conceptual advantage of the BSE is that of
a two-particle equation, which is necessary for describing
the excitonic effects. We diagonalize the two-particle
Hamiltonian to explicitly obtain the exciton eigenfunctions
and eigenvalues, and then the exciton binding energy—the
difference between the QP gap and the optical gap. The
intermediate GW step essentially results in an adjustment
of the KS eigenvalues toward QP energy levels, which can
be matched to experiment. It has been shown that the
combined GW-BSE method provides significantly better
agreement with experimental optical properties than
single-particle calculations alone [3–10].

Density functional calculations are performed with the
open-source code QUANTUM ESPRESSO [22]. We use a
plane wave basis expanded to 45 Ha and norm-conserving
pseudopotentials to perform nonspin polarized valence
electron calculations. The Perdew-Burke-Ernzerhof pa-
rametrization of the generalized gradient approximation
[23] is adopted for the exchange-correlation functional,
with the Brillioun zone sampling on a 12� 12� 12
Monkhorst-Pack grid. Wannier functions are constructed
using the WANNIER 90 code [24,25]. To better describe the
strong Coulomb and exchange interactions of the localized
Zn d states, the GGAþU method [26,27] is used for ZnO,
with the screened Coulomb and exchange parameters
U ¼ 8:0 eV and J ¼ 0:9 eV, respectively, which were
calculated from first principles [28]. GW and BSE

calculations employ the BerkeleyGW package [29], and
we perform the single shot G0W0 calculations using the
plasmon-pole approximation [20] to the dynamical screen-
ing. The BSE kernel is constructed using the four highest
valence bands and four lowest conduction bands of the
system on the same 12� 12� 12 k-point grid; however,
accurate representations of the band edge excitons require
an enormously dense grid of k points. Fortunately,
BerkeleyGW can interpolate the interaction kernel onto a
much finer grid of k points, eliminating the formidable
need to compute a huge number of matrix elements. To
keep the matrix diagonalization tractable, we interpolate
the kernel onto a very dense grid in roughly 2% of the full
Brillouin zone, centered at the direct gap of the material.
For completeness in our analysis, we first confirm the

intuitive picture of more localized excitons having higher
Eb. Before comparing the localization of the exciton to the
binding energy, we first define our measure of localization
in three dimensions. To obtain a three-dimensional distri-
bution from the six-dimensional exciton wave function
�ðr1; r2Þ for electron and hole coordinates r1 and r2,
respectively, we examine the relative distribution �ðrÞ of
the electron around the hole:

�ðrÞ ¼
Z

�ðr0; r0 þ rÞdr0: (1)

Then one can compute the spread of �ðrÞ, defined as

� ¼ hr2i � hri2; (2)

and the localization length as
ffiffiffiffiffi
�

p
.

Assuming�ðrÞ of the (lowest-energy) exciton has the 1s
hydrogen-like wave function, then its Bohr radius a�0 �ffiffiffiffiffi
�

p
=

ffiffiffi
3

p
, and we can simply compute a�0 to compare the

localization levels of excitons. Figure 1 summarizes the
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FIG. 1 (color online). Calculated exciton binding energy (Eb)
vs. exciton Bohr radius (a�0). These theoretical values obtained

from solving the BSE agree very well with experimental data.
The curve represents Eb fitted to C=ða�0Þ2, with C a constant. We

also computed a very strongly bound and localized exciton in
NaCl, which is off the scale of the plot but in agreement with the
overall trend.
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computed exciton binding energies in Si, GaAs, AlN, GaN,
InN, and ZnO, as a function of exciton Bohr radius. As
expected, Eb increases monotonically as a�0 decreases.

Using the hydrogenic model,

a�0 ¼
m

m� �a0; (3)

Eb ¼ e2

�a�0
¼ e2a0

ðm�=mÞða�0Þ2
; (4)

wherem (m�) is electron (effective reduced) mass, a0 is the
Bohr radius for the hydrogen atom, e is the electron charge,
and � is the dielectric constant. Because the variation of
m�=m is relatively small in the considered semiconductors
except for GaAs, Eb / 1=ða�0Þ2, as demonstrated in Fig. 1.

In both the simple hydrogenic model of excitons and the
BSE description, screening, predominantly by the valence
electrons, leads to a weaker Coulomb interaction between
electron and hole, and hence a reduced exciton binding
energy. Although the actual behavior of electronic screen-
ing in real materials is rather complicated, qualitatively, a
more extended (delocalized) valence electron distribution
tends to screen more strongly than less extended (local-
ized) distribution. Stronger screening leads to higher Eb

and more localized excitons as is evident in Fig. 2, in which
both valence electrons and exciton distributions are plotted
for Si and ZnO. The more localized valence electrons in
ZnO lead to smaller a�0 and more compact exciton than

those in Si.
To quantitatively demonstrate the relationship between

the localization of valence electrons and exciton binding
energy, however, we need to use Wannier functions for
extended systems whose localization is otherwise not

obvious in the Bloch wave picture. Wannier functions are
expected to display localization characteristic of the total
charge density. An ionic crystal, for instance, would likely
have Wannier functions localized to the anions of the
system, while in GaAs Wannier functions are expanded
to most space.
As introduced by Marzari and Vanderbilt [25], the

spread functional � of an N-band crystal in real space is

� ¼ XN
n¼1

½hr2in � hri2n�; (5)

which is minimized with respect to unitary transforma-
tions, and the localization length of the valence electrons

�el ¼
ffiffiffiffiffi
�

p
=N. � can be decomposed into one gauge in-

variant term �I and a variant term ~�. The WANNIER 90
code [24,25] is employed, which searches over a range of
unitary transformations to the wave functions to identify
the Wannier orbitals (maximally localized Wannier func-

tions) that minimize ~�.
Because the induced change in macroscopic polarization

�Pmac depends linearly on the localization length �el [30],
dielectric constant is also expected to depend on �el

linearly,

" ¼ C1 þ C2�el; (6)

as clearly demonstrated in Fig. 3(a), with C1 and C2 as two
fitting parameters. Combining Eqs. (3) and (6), we find that

FIG. 2 (color online). Isosurfaces of valence charge density
(upper panels) and exciton distribution (lower panels), j�ðrÞj2, in
Si (left panels) and in ZnO (right panels). Here four valence
bands for Si and six for ZnO are included, and the corresponding
isosurface values are set to be identical in panels (a) and (b), with
high to low values ranging from red (dark) to yellow (light)
colors. Charge density is periodic, plotted in a single unit cell,
while exciton is nonperiodic, extended to many unit cells. Atoms
in a unit cell of Si and ZnO are illustrated in panel (c) and (d),
respectively.
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FIG. 3 (color online). Calculated dielectric constant (") in
panel (a) and exciton Bohr radius (a�0) in panel (b) as functions

of valence electron localization length (�el). Here the dashed
lines are linear fittings, and the black and green (grey) symbols
correspond to �el computed from the invariant (�I) and total (�)
spread, respectively.
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a�0 ¼
m

m� a0ðC1 þ C2�elÞ; (7)

i.e., the exciton Bohr radius depends linearly on valence
electron localization length as well, if the variation of
m=m� in semiconductors is omitted. Fig. 3(b) compares
a�0 with �el; although the linear dependence is not quanti-

tatively accurate, qualitatively, a low level of valence elec-
tron localization leads to strong screening and large value
of ", which cause the exciton to be loosely bound with low
Eb and large a�0. While these evident trends are not par-

ticularly surprising, our ab initio calculations carried out to
the Bethe-Salpeter level provide rigorous confirmation of
the relationship between localized charge, electron screen-
ing, and exciton binding energies.

Finally, in the simplest and widely accepted picture
of atomic bonding in solids [15], the anion states and
cation states form bonding and antibonding bands. The
bonding VBM state is mainly composed of anion atomic
orbitals while the antibonding CBM state mainly consists
of cation atomic orbitals. Our DFT results indicate that this
description is not completely correct, especially for ionic
materials; instead, a significant anion contribution to the
CBM for AlN and ZnO is found. The deviation is because
these ionic compounds have some high-lying unoccupied
anion s orbitals that can hybridize strongly with the
cation s orbitals, making the CBM contain an appreciable
amount of anion orbitals. Furthermore, we find that, for all
materials in our study, deviations from this model are
critical to explain trends in Eb. In an exciton, the hole is
derived mostly from the states close to VBM, while the
electron is mostly derived from the states close to CBM;
therefore, the contribution of anion orbitals near the CBM
would strongly enhance the Coulomb and exchange
interactions, which are important matrix elements in the
electron-hole interaction kernel K for BSE. As a result,
materials with a significant amount of CBM and VBM
states both localized at the same atomic site are expected
to have a high exciton binding energy, instead of CBM and
VBM states being on the anions and cations, separately.

The BSE kernel K has screened direct and exchange
interactions, as constructed by terms such as c cðr1Þc �

vðr2Þ.
This suggests that NcNv, the product of the numbers of
localized valence and conduction states near band edges,
could be used to indicate the strength of K and therefore
the strength of the electron-hole interaction. We compute
the product NcNv at each atomic site to show that this on
site localization at anions in ionic semiconductors is a good
indicator of the strength of the exciton binding. Here Nc

and Nv are the numbers of near-gap states within a cutoff
energy, which in real space are near ions within a cutoff
radius. In reasonable ranges, the trend of Eb as a function
of NcNv is not sensitive to the choices of both cutoffs, and
NcNv is a practical way to account for CBM and VBM
states localized on the same atomic sites. Figure 4 shows
that NcNv for cations is negligible compared to that for

anions. Most importantly, Eb increases as NcNv (at the
anion sites) increases, and a good numerical fitting is Eb /ffiffiffiffiffiffiffiffiffiffiffiffi
NcNv

p
, as plotted in Fig. 4. This cannot be derived from

the simple effective mass model, and a high value of total
density of states at the band edges, by itself, is not a strict
enough criterion to indicate the strength of excitonic
binding.
In particular, returning to the comparison of GaN and

ZnO, their difference in Eb can be explained by their
different numbers of near-gap states at the anion site.
ZnO has a large CBM component on oxygen sites because
of strong hybridization of the 4s states of Zn with the high
lying 3s states of oxygen. GaN does not have as much
hybridization for the CBM state because the N 3s level has
a higher energy than the Ga 4s level [31], and, as a result,
has a reduced value of Nc at the N site.
In conclusion, the variation in exciton binding energy of

semiconductors manifests itself in the real space localiza-
tion of the exciton, which in turn is determined by the
strength of electron screening in semiconductors. The
more localized valence electrons, which we quantify by
the spread of the Wannier functions, are found to be poorer
at screening, leading to a smaller dielectric constant.
Furthermore, Eb is large for ionic semiconductors because,
in contrast to the simple two-level coupling model, the
conduction band edge states have significant overlap with
valence band edge states localized to anion sites, increas-
ing the electron-hole interaction. All these trends can be
qualitatively fitted to simple scaling rules based on essen-
tial physical pictures of exciton, valence electrons, and
near-gap states, and they pave the way for understanding
and predicting the excitonic effects in more complicated
semiconductors without resorting to computationally very
demanding many-particle perturbation theory.
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