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When pure water is cooled at �106 K=s, it forms an amorphous solid (glass) instead of the more

familiar crystalline phase. The presence of solutes can reduce this required (or ‘‘critical’’) cooling rate by

orders of magnitude. Here, we present critical cooling rates for a variety of solutes as a function of

concentration and a theoretical framework for understanding these rates. For all solutes tested, the critical

cooling rate is an exponential function of concentration. The exponential’s characteristic concentration

for each solute correlates with the solute’s Stokes radius. A modification of critical droplet theory relates

the characteristic concentration to the solute radius and the critical nucleation radius of ice in pure water.

This simple theory of ice nucleation and glass formability in aqueous solutions has consequences for

general glass-forming systems, and in cryobiology, cloud physics, and climate modeling.
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Ice nucleation and growth are of major interest in fields
ranging from cryobiology to atmospheric physics. Ice is a
key issue in cryopreservation of cells and tissues [1] and in
cryocooling of samples for macromolecular crystallography
[2,3], where solutes like salts, sugars, alcohols, and polyols
can have dramatic effects on ice formation. In atmospheric
physics, models of cloud formation are sensitive to the
nature of the critical nucleus of ice crystals [4] with impli-
cations for climate models [5]. Supercooled water is an
interesting system in its own right [6], and the formation
of crystalline phases from supercooled solutions is an active
area of study [7].

Previous experiments have focused on properties such as
the melting and glass transition temperatures, and models
to explain the data have largely been phenomenological.
Similar models have been applied to explain glass form-
ability in a wide variety ofnonaqueous systems. Here, we
report measurements of the minimum cooling rates [or
‘‘critical cooling rates’’ (CCRs)] required to prevent ice
formation in aqueous solutions during cooling to �100 K
or below. We show that a surprisingly simple statistical
modification to classical thermodynamic nucleation theory
provides an excellent account of these data.

We studied eight different solutes (see Fig. 1), including a
salt (sodium chloride), simple alcohols (methanol, ethanol),
sugars (dextrose, trehalose), polyols (glycerol, ethylene
glycol), and polyethylene glycol 200 (PEG 200). All are
compact and highly soluble and can have large effects on
critical cooling rates required for vitrification.

The effects of these solutes on ice nucleation were
evaluated by measuring the critical cooling rate abovewhich
no ice was observed. Below the critical rate, a sample turns
opaque on cooling, indicating the formation of polycrystal-
line ice. As the rate increases, a transition to transparent
samples is observed. This optical transition corresponds to a
transition in the x-ray diffraction patterns obtained from the
cooled samples [8]. Clear samples show diffuse rings

characteristic of a glassy state, whereas opaque samples
show a sharp ring characteristic of a crystalline powder.
As described in more detail elsewhere [9], ultrathin-wall

plastic tubing was filled with the solution of interest and
plunged into liquid nitrogen. Cooling rates were varied by
varying the tube diameter and were directly measured for a
reference solution using thermocouples threaded down the
tube center. For each tubing diameter, solutions with solute
concentration increasing in 2% increments were sequen-
tially cooled until the crystalline-to-amorphous transition
was observed; the cooling rate in that tubing diameter was
recorded as the CCR for that concentration. Cooling rates

FIG. 1 (color online). Critical cooling rate (CCR)—the mini-
mum cooling rate to obtain a vitrified sample—of aqueous
solutions as a function of solute concentration, for each of the
eight solutes studied. Solid lines represent exponential fits of the
form CCR ¼ CCR0e

��c, where c is the solute concentration.
The fits extrapolate to similar values of �3� 105 K=s at c ¼ 0
(corresponding to pure water).

PRL 110, 015703 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

4 JANUARY 2013

0031-9007=13=110(1)=015703(4) 015703-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.110.015703


examined here varied from �10 to 1000 K=s, much larger
than achieved in previous calorimetric studies, allowing
CCR determination at much lower solute concentrations.

Figure 1 shows the resulting CCR versus concentration
data for eight cryoprotectants, with the data for glycerol
taken from Ref. [9]. Two features are noteworthy. First, for
all solutes, the CCR varies exponentially with concentra-
tion over the 2 orders of magnitude in cooling rate studied.
Second, each exponential extrapolates to a value between
105 and 106 K=s at zero concentration, in agreement with
the estimated value for the CCR of pure water [10,11]. It is
thus likely that the CCR remains exponential in concen-
tration to zero concentration. This suggests that a simple
theory, encompassing all solutes at all concentrations, can
be used to explain the data.

We begin by assuming that at cooling rates near the
CCR, the limiting step in ice formation is cubic ice (Ic)
nucleation at a temperature near 200 K. This is justified for
several reasons. First, unlike at small cooling rates, just
below the CCR there is comparatively little time for nuclei
to grow before the uncrystallized sample fraction vitrifies.
Second, the ice nucleation rate peaks strongly near 200 K,
but the growth rate there is small and decreases rapidly on
further cooling [12–16]. Third, x-ray diffraction experi-
ments suggest that the transition versus cooling rate or
concentration between crystalline and amorphous samples
is discontinuous [8]; if growth was limiting, one would
expect a continuous transition as samples were trapped
with various ensembles of growing ice clusters after cool-
ing at different rates. Finally, it is known that the formation

of a small (� 20 �A) cubic ice cluster precedes conversion
to and growth of a larger hexagonal ice cluster [4,17].

We consider cubic ice nucleation in a concentrated
solution as being composed of two steps. First, local con-
centration fluctuations must give rise to a region of pure
liquid water large enough for cubic ice to nucleate. Then,
nucleation proceeds as it would in the pure system. This
simplified picture allows us to write the nucleation rate for
nuclei of size V as

Jn ¼ J0P
V
n ; (1)

where J0 is the nucleation rate in the pure system, Jn is the
nucleation rate in a solution with solute number density n,
and PV

n is the probability of finding a region of volume V
empty of solutes. If the solutes are ideal (i.e., they behave
as an ideal gas), the number m within V will be given by a
Poisson distribution with an average given by the concen-
tration [18]. Evaluating this distribution at m ¼ 0 gives

PV
n ¼ e�nV (2)

and

Jn ¼ J0e
�nV: (3)

The assumption of nucleation-dominated ice formation
implies that the critical cooling rate should be proportional

to the ice nucleation rate. Consequently, it is clear that (3)
can be used to describe the data in Fig. 1 with each solute
having an exponential dependence of CCR on concentra-
tion n and a solute-specific characteristic volume.
To evaluate and interpret this volume, we incorporate

the effect described by (3) into classical nucleation theory.
For a pure system, the change in free energy on formation
of a spherical ice cluster of a given radius, RIc , is

�G0 ¼ � 4

3
�ð�gvÞR3

Ic
þ 4��R2

Ic
; (4)

where �gv and � are the bulk and surface free energy
density changes, respectively, and Ic indicates cubic ice.
The maximum of the function �G�

0—the barrier to nuclea-

tion—occurs at the critical radius given by

R�
Ic
¼ 2�

�gv
: (5)

The nucleation rate can then be written as

J0 ¼ Ae��G�
0
=kbT; (6)

where A is a prefactor that will not concern us for the
remainder of the discussion. The effect of a solute can be
expressed by combining and (3) and (6), which gives

Jn ¼ Ae��G�
0
=kBTe�nV:

This suggests a modification to the classical free energy
of a cluster,

�Gn ¼ � 4

3
�ð�gvÞR3

Ic
þ 4��R2

Ic
þ 4

3
�nkBTðRIc þ RsÞ3;

(7)

where we assume that�gv and� are the values for the pure
system. The first two terms are common to (4) while the
third term represents the free energy of excluding the solute

FIG. 2 (color online). Schematic illustration of the exclusion
volume involved in cubic ice (Ic) nucleation. If the region inside
radius RIc is to be completely free of solutes, the center of mass

of all solute atoms must be excluded from a region of radius
Re ¼ RIc þ Rs. Differences in effective solute radii Rs are

responsible for the differences in slope in Fig. 1.
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from the spherical region of radius RIc . As shown in Fig. 2,

for a solute of size Rs, this requires that the solute’s center
of mass be excluded from a volume of radius RIc þ Rs.

The factor nkBT in the third term of the free energy can be
recognized as a microscopic osmotic pressure [19].

From (7), the energy barrier to nucleation in the presence
of solutes is then

�G�
n ¼�G�

0þ
4

3
�nkBTðR�

Ic
þRsÞ3þOðnkBT=�gvÞ2; (8)

where R�
Ic
is the critical nucleation radius for cubic ice in

pure water. The size of the expansion parameter nkBT=�gv
can be estimated from �gv ¼ �hv � T�sv � Lð�T=TmÞ
where L is the latent heat of fusion, Tm is the melting
temperature, and �T is the undercooling at which nuclea-
tion occurs. Using L ¼ 334 J=kg and Tm ¼ 273 K for
hexagonal ice and �T ¼ 73 K gives nkBT=�gv ¼ 0:18
for n corresponding to a 10 M solution. As shown in
Table I, the maximum concentrations in Fig. 1 of all solutes
except methanol are smaller than this value.

Assuming that the CCR is proportional to nucleation
rate, (8) yields

CCRn ¼ CCR0e
�Ven; Ve ¼ 4=3�ðR�

Ic
þ RsÞ3: (9)

This implies that the slope of the data for each solute in
Fig. 1 is set by the volume Ve of the sphere from which the
solute’s center of mass must be excluded; the radius of this
sphere is the sum of the radius of a critical nucleus in the
pure system and the solute’s radius.

Figure 3 shows the ‘‘exclusion radius’’ Re ¼ R�
Ic
þ Rs

obtained from the fits in Fig. 1 for each solute versus its
Stokes radius [calculated from measured self-diffusion
constants at T ¼ 298 K (Table II)]. The solid line is Re ¼
R�
Ic
þ RStokes with R�

Ic
¼ 7:5 �A, based on Huang and

Bartell’s value R�
Ic
¼ 7:3–7:8 �A [13] derived by modeling

the time evolution of electron diffraction patterns from
freezing water clusters. Previous studies found that the

self-diffusion constants of many different solutes correlate
with their ability to increase supercooling capacity [21].
This is reasonable because the Stokes radius relates to the
microscopic dynamics of the hydrated solute at the
molecular scale on which ice nuclei form.
The prediction in Fig. 3 underestimates the exclusion

radius Re for solutes with larger Stokes radii. This may
result because the dynamical hydration shell relevant in
solvent nucleation may be thicker than that relevant in
the relatively slow dynamics that dominate solute diffusion
and the Stokes radius [22]. For example, glucose and treha-
lose have Stokes radii of 3.5 and 4.7 Å, respectively. When
probed on the picosecond time scale [23], corresponding to
that for rearrangements of the hydrogen bonding network
[24] that might be expected to impact nucleation, their
hydration shell thicknesses are 3.7 and 6.5 Å, respectively.

TABLE I. Percent weight per volume (% w=v) to molarity
conversion factors and maximum measured concentrations for
each of the eight solutes in Fig. 1.

Solute MW (g=mol)

Maximum solute

concentration

% (w=v) M

Ethanol 46.1 24 5.2

Methanol 32.0 32 10.0

NaCl 58.4 32 5.5

PEG 200 200 44 2.2

Glycerol 92.1 39 5.0

Ethylene glycol 62.1 46 7.4

Dextrose 180.1 56 3.1

Trehalose 342.3 58 1.7

FIG. 3 (color online). The exclusion radius Re determined for
each solute versus the solute’s Stokes radius. The solid line is the
model prediction: Re ¼ R�

Ic
þ RStokes with a critical radius for

pure water R�
Ic
¼ 7:5 �A [13]. The open symbols are calculated as

Re ¼ R�
Ic
þ RStokes þ RH, where RH is the hydration shell thick-

ness measured by THz spectroscopy in Ref. [23].

TABLE II. Measured self-diffusion coefficients and calculated
Stokes radii for the solutes studied. All measurements were at
298 K.

Solute

Self-diffusion constant

(10�10 m2 s�1)

Stokes

radius (Å) Reference

Ethanol 12.2 1.99 [20]

Methanol 15.6 1.55 [20]

Sodium chloride 16.0 1.52 [21]

PEG 200 4.86 4.99 [21]

Glycerol 9.21 2.63 [21]

Ethylene glycol 11.4 2.13 [21]

Dextrose 6.75 3.59 [21]

Trehalose 5.08 4.77 [21]
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The sum of these hydration shell radii and the corresponding
Stokes radii (which include a contribution from hydration
[22]) is indicated by the open symbols in Fig. 3.

The dynamical hydration shell and its effects on ice
nucleation are known in other contexts. Computational

studies show that there is a �5:5 �A shell of water with
altered structure and altered rotational and translational
dynamics on the picosecond time scale surrounding carbo-
hydrates [25]. IR spectroscopy of water dynamics in
nanometer-size reverse micelles show that approximately
half of the water in a 4 nm diameter micelle is ‘‘interfacial’’
while the other half is bulk-like [26], implying a 5.6 Å
interfacial layer thickness. NMR studies of water adsorbed
to porous glass show that 2.5–3 monolayers are essentially
in a ‘‘frozen’’ amorphous structure even at room tempera-
ture, and that this fraction remains amorphous as the
sample is cooled to freezing temperatures [27]. Water
confined inside the 2 nm pores of porous glass does not
crystallize [28], and it crystallizes only very slowly in the
6.5 nm channels of certain protein crystals [29].

In the context of the glass forming ability of systems
including metallic glasses, glassy oxides, and aqueous cry-
oprotectant solutions, extensive experimental CCR data
have been empirically correlated using the parameter

� ¼ Tx

Tl þ Tg

; (10)

where Tg is the glass temperature, Tl is the liquidus tempera-

ture, and Tx is the devitrification temperature of the solution
[7]. While this empirical correlation works well for the
systems and concentration ranges fromwhich it was derived,
it fails for the less-concentrated cryoprotectant solutions
reported here. For example, scaling the measured CCR of
a 30% (w=v) glycerol solution requires Tx ¼ 123 K, well
below Tg ¼ 148 K [30].

The nucleation model proposed here makes no assump-
tions that limit its applicability to aqueous solutions.
Equation (7) may thus be expected to hold in arbitrary
systems where a favored phase nucleates in the presence of
a species that must be excluded from the critical cluster.
To test the generality of Eq. (7), we performed lattice simu-
lations of nucleation in an Ising system below the critical
temperature in the presence of otherwise noninteracting
solutes that were excluded from the nucleating phase by
hard-wall interactions. The simulations demonstrate that
the free energy of a cluster containing N sites is increased
by nNkbT where n is the volume fraction of solutes, con-
sistent with the third term in Eq. (7). Furthermore, when
nearest-neighbor interactions between the nucleating phase
and solutes are included, the basic features of the exclusion
radius, Re, are captured.

This work was supported by the NSF (Grants No. DMR-
0805240 and No. DMR-1005479) and by the NIH (Grant
No. R01 GM65981).

*Corresponding authors.
maw64@cornell.edu

ret6@cornell.edu
[1] P. Mazur, Science 168, 939 (1970).
[2] H. Hope, Acta Crystallogr. Sect. B 44, 22 (1988).
[3] D.W. Rodgers, Structure 2, 1135 (1994).
[4] D.M. Murphy, Geophys. Res. Lett. 30, 2230 (2003).
[5] M. B. Baker, Science 276, 1072 (1997).
[6] P. G. Debenedetti, J. Phys. Condens. Matter 15, R1669

(2003).
[7] Z. P. Lu and C. T. Liu, Phys. Rev. Lett. 91, 115505 (2003).
[8] V. Berejnov, N. S. Husseini, O.A. Alsaied, and R. E.

Thorne, J. Appl. Crystallogr. 39, 244 (2006).
[9] M. Warkentin, V. Stanislavskaia, K. Hammes, and R. E.

Thorne, J. Appl. Crystallogr. 41, 791 (2008).
[10] P. Bruggeller and E. Mayer, Nature (London) 288, 569

(1980).
[11] I. Kohl, L. Bachmann, A. Hallbrucker, E. Mayer,

and T. Loerting, Phys. Chem. Chem. Phys. 7, 3210
(2005).

[12] L. S. Bartell and J. F. Huang, J. Phys. Chem. 98, 7455
(1994).

[13] J. F. Huang and L. S. Bartell, J. Phys. Chem. 99, 3924
(1995).

[14] J.M. Hey and D.R. Macfarlane, Cryobiology 33, 205

(1996).
[15] J.M. Hey and D.R. Macfarlane, Cryobiology 37, 119

(1998).
[16] A. Manka, H. Pathak, S. Tanimura, J. Wölk, R. Strey, and

B. E. Wyslouzil, Phys. Chem. Chem. Phys. 14, 4505

(2012).
[17] G. P. Johari, J. Chem. Phys. 122, 194504 (2005).
[18] S. K. Ma, Statistical Mechanics (World Scientific,

Philadelphia, 1985), 1st ed., Chap. 11.
[19] P. J. Atzberger and P. R. Kramer, Phys. Rev. E 75, 061125

(2007).
[20] L. Hao and D.G. Leaist, J. Chem. Eng. Data 41, 210

(1996).
[21] N. Kimizuka and T. Suzuki, J. Phys. Chem. B 111, 2268

(2007).
[22] B. Halle and M. Davidovic, Proc. Natl. Acad. Sci. U.S.A.

100, 12135 (2003).
[23] M. Heyden, E. Bründermann, U. Heugen, G. Niehues,

D.M. Leitner, and M. Havenith, J. Am. Chem. Soc. 130,
5773 (2008).

[24] R. Kumar, J. R. Schmidt, and J. L. Skinner, J. Chem. Phys.
126, 204107 (2007).

[25] S. L. Lee, P. G. Debenedetti, and J. R. Errington, J. Chem.

Phys. 122, 204511 (2005).
[26] D. E. Moilanen, E. E. Fenn, D. Wong, and M.D. Fayer,

J. Chem. Phys. 131, 014704 (2009).
[27] K. Overloop and L. Vangerven, J. Magn. Reson., Ser. A

101, 179 (1993).
[28] J. Rault, R. Neffati, and P. Judeinstein, Eur. Phys. J. B 36,

627 (2003).
[29] M. Weik, G. Kryger, A.M.M. Schreurs, B. Bouma, I.

Silman, J. L. Sussman, P. Gros, and J. Kroon, Acta

Crystallogr. Sect. D 57, 566 (2001).
[30] D. Harran, Bull. Soc. Chim. Fr. 1–2, I40 (1978).

PRL 110, 015703 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

4 JANUARY 2013

015703-4

http://dx.doi.org/10.1126/science.168.3934.939
http://dx.doi.org/10.1107/S0108768187008632
http://dx.doi.org/10.1016/S0969-2126(94)00116-2
http://dx.doi.org/10.1029/2003GL018566
http://dx.doi.org/10.1126/science.276.5315.1072
http://dx.doi.org/10.1088/0953-8984/15/45/R01
http://dx.doi.org/10.1088/0953-8984/15/45/R01
http://dx.doi.org/10.1103/PhysRevLett.91.115505
http://dx.doi.org/10.1107/S0021889806004717
http://dx.doi.org/10.1107/S0021889808018451
http://dx.doi.org/10.1038/288569a0
http://dx.doi.org/10.1038/288569a0
http://dx.doi.org/10.1039/b507651j
http://dx.doi.org/10.1039/b507651j
http://dx.doi.org/10.1021/j100082a011
http://dx.doi.org/10.1021/j100082a011
http://dx.doi.org/10.1021/j100012a010
http://dx.doi.org/10.1021/j100012a010
http://dx.doi.org/10.1006/cryo.1996.0021
http://dx.doi.org/10.1006/cryo.1996.0021
http://dx.doi.org/10.1006/cryo.1998.2108
http://dx.doi.org/10.1006/cryo.1998.2108
http://dx.doi.org/10.1039/c2cp23116f
http://dx.doi.org/10.1039/c2cp23116f
http://dx.doi.org/10.1063/1.1900723
http://dx.doi.org/10.1103/PhysRevE.75.061125
http://dx.doi.org/10.1103/PhysRevE.75.061125
http://dx.doi.org/10.1021/je950222q
http://dx.doi.org/10.1021/je950222q
http://dx.doi.org/10.1021/jp065379b
http://dx.doi.org/10.1021/jp065379b
http://dx.doi.org/10.1073/pnas.2033320100
http://dx.doi.org/10.1073/pnas.2033320100
http://dx.doi.org/10.1021/ja0781083
http://dx.doi.org/10.1021/ja0781083
http://dx.doi.org/10.1063/1.2742385
http://dx.doi.org/10.1063/1.2742385
http://dx.doi.org/10.1063/1.1917745
http://dx.doi.org/10.1063/1.1917745
http://dx.doi.org/10.1063/1.3159779
http://dx.doi.org/10.1006/jmra.1993.1028
http://dx.doi.org/10.1006/jmra.1993.1028
http://dx.doi.org/10.1140/epjb/e2004-00017-1
http://dx.doi.org/10.1140/epjb/e2004-00017-1
http://dx.doi.org/10.1107/S0907444901001196
http://dx.doi.org/10.1107/S0907444901001196

