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We explore the far-from-equilibrium response of a holographic superfluid using the AdS/CFT

correspondence. We establish the dynamical phase diagram corresponding to quantum quenches of the

order parameter source field. We find three distinct regimes of behavior that are related to the spectrum of

black hole quasinormal modes. These correspond to damped oscillations of the order parameter and to

overdamped approaches to the superfluid and normal states. The presence of three regimes, which

includes an emergent dynamical temperature scale, is argued to occur more generally in time-reversal-

invariant systems that display continuous symmetry breaking.
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In the last few years, there has been a wealth of experi-
mental activity exploring the nonequilibrium properties of
quantum many-body systems. Recent advances include
observations of long-lived oscillations in colliding Bose
gases [1] and the dynamics of cold atoms following a
quantum quench [2,3]. Nonequilibrium measurements
have also been exploited to reveal the superfluid amplitude
mode [4] and to explore pairing in high temperature super-
conductors [5]. In parallel, there has also been significant
theoretical work on low-dimensional strongly correlated
systems, where analytical [6] and numerical [7–9] progress
is possible; for a review, see Ref. [10].

A notable feature to emerge from the dynamics of the
integrable Bardeen-Cooper-Schrieffer (BCS) Hamiltonian,
following an abrupt quench of the pairing interactions, is a
regime of persistent oscillations of the order parameter
[11–15]. This is accompanied by a transition to a regime
of damped oscillations as the quench strength is increased
[16]. These integrable results apply in the collisionless
regime for time scales shorter than the energy relaxation
time [17,18]. In spite of these achievements, it is challeng-
ing to see how such results are modified at late times in the
collision dominated regime. In particular, do the oscilla-
tions and the transition withstand quantum and thermal
fluctuations and departures from integrability? Related
considerations apply to other integrable systems, and gen-
eralizing nonequilibrium results to more generic situations,
including higher dimensions, is a major open challenge.

In this respect, the anti–de Sitter/conformal field theory
(AdS/CFT) correspondence [19–21] can offer valuable
insights. It recasts certain strongly interacting quantum
systems, which are large N field theories, in terms of
weakly coupled gravitational models in at least one dimen-
sion higher. This provides access to the quantum dynamics
from the classical gravitational equations, where finite
temperatures correspond to black hole solutions [22–27].
The methods are very powerful when combined with the

numerical solution of the equations of motion, as they
allow access to the far-from-equilibrium response over
the entire time evolution [28–33].
In this Letter, we will focus on the dynamics of a holo-

graphic superfluid [29,34,35] under a spatially homogene-
ous and isotropic quench. Our primary aim is to reveal
three regimes of nonequilibrium response, including a
dynamical transition from underdamped to overdamped
collective oscillations. We argue that this transition will
feature in other (holographic and nonholographic) time-
reversal-invariant systems that display continuous symme-
try breaking.
Model.—We consider the simplest representative action

for a holographic superfluid, originally introduced in
Refs. [34,35]. The model is defined in the so-called
‘‘bottom-up’’ approach that specifies the action directly
on the gravitational side, without recourse to microscopic
string theory calculations. It describes a complex scalar
field c , with charge q and mass m, minimally coupled to
electromagnetism and gravity in 3þ 1 dimensions:

S ¼ 1

2�2

Z
d4x

ffiffiffiffiffiffiffi�g
p �

Rþ 6

‘2
� F2

4
� jDc j2 �m2jc j2

�
;

(1)

where Fab ¼ @aAb � @bAa, Da ¼ @a � iqAa and the
radius ‘ parametrizes the inverse curvature of AdS space-
time.
Exploiting the AdS/CFT correspondence, the model is

dual to a strongly coupled large N CFT in ð2þ 1ÞD flat
Minkowski space-time, residing on the AdS boundary,
as shown in Fig. 1; for reviews, see Refs. [36,37]. The CFT
is time-reversal invariant and has a global U(1) symmetry
whose conserved current, J�, is dual to Aa. The U(1)

symmetry is spontaneously broken below a critical tem-
perature, Tc, corresponding to the onset of superfluidity.
This is possible in the ð2þ 1ÞD CFT due to large N [35].
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Other holographic superfluid models, including ð3þ 1ÞD
CFTs, will exhibit analogous phenomena. In this Letter, we
set 1=ð2�2Þ � C=‘2 and choose units with ‘ ¼ 1. Here, C is
a measure of the number of local degrees of freedom in the

CFT, with C� N3=2 at large N.
In general, it is very difficult to analyze such strongly

interacting high-dimensional CFTs, but the AdS/CFT corr-
respondence allows key insights. In particular, fields in
AdS space-time may be related to physical observables
in the CFT via their coordinate expansion close to the AdS
boundary. Assuming spatial homogeneity and isotropy of
the boundary theory, the holographic description requires
two coordinates, z and t; here, z parametrizes the distance
from the AdS boundary and t is the boundary time, as
shown in Fig. 1. For example, in equilibrium, the time
component of the gauge field, At, is dual to the
charge density � of the CFT via the expansion At ¼ ��
z�þ � � � , where � is the chemical potential of the CFT
with hJti ¼ �=2�2. Likewise, the field c is dual to an
operator O in the CFT. Using the standard holographic
dictionary, this has a scaling dimension � fixed by m
[34,35]; for simplicity, we choose q ¼ 2 and m2 ¼
�2=‘2 with� ¼ 2 [38]. This corresponds to the expansion
c ¼ zc 1 þ z2c 2 þ � � � , with c 1 ¼ 0. Analogous to the
previous identifications, the AdS/CFT correspondence
allows one to identify c 1 as a source for the operator O
and c 2 as the expectation value, hOi � c 2=2�

2.
As highlighted in Refs. [34,35], the operator O corre-

sponds to the superfluid order parameter of the CFT and is
nonvanishing below Tc. In the gravitational framework,
this reflects a change in the classical black hole solutions
of the model (1): In the normal state, the black holes have
c ¼ 0, while, in the superfluid state, they have ‘‘scalar
hair’’ with c � 0. The bosonic order parameter O is
argued to be composed of fermionic bilinears and scalar

fields residing in the ð2þ 1ÞD CFT [39]. Although more
complicated than in BCS theory, it is highly reminiscent of
a pairing field. While a detailed microscopic description of
the CFT and its operator content requires a ‘‘top-down’’
approach based on string theory, we can nonetheless make
a great deal of progress without such considerations, owing
to universality. We will return to string theory descriptions
in future work.
Gaussian quantum quench.—We now analyze the far-

from-equilibrium dynamics of the dual CFT, at finite tem-
perature and charge density, by numerically constructing
time-dependent black hole solutions for the holographic
model (1). Details of our coordinate system and metric
are provided in the Supplemental Material [40]; see also
Fig. 1. Near the AdS boundary at z ¼ 0, the latter have the
time-dependent asymptotic expansion

c ¼ zc 1ðtÞ þ z2c 2ðtÞ þ � � � ;
At ¼ �ðtÞ � z�ðtÞ þ � � � :

(2)

The holographic renormalization group allows one to
establish the time-dependent correspondence

hJtðtÞi ¼ �ðtÞ � _�ðtÞ
2�2

;

hOðtÞi ¼ ½c 2ðtÞ þ 2i�ðtÞc 1ðtÞ�
2�2

(3)

in our space-time coordinates and gauge; in the case where
� ¼ _� ¼ 0, we recover the previous correspondence. We
take as our initial state a superfluid corresponding to a
black hole with c � 0 [35] and set the initial temperature
to Ti ¼ 0:5Tc for numerical convenience; as we will see,
similar results are also expected for other values of Ti. We
then apply a quench of the source field c 1ðtÞ, conjugate to
hOðtÞi. Specifically, we apply a Gaussian-type quench,
centred on t ¼ 0, by imposing

c 1ðtÞ ¼ ��e�ðt= ��Þ2 ; (4)

where �� and �� characterize the quench strength and the
time scale, respectively. The chemical potential of the
initial state, �i, sets the scale for the resulting dynamics
and explicitly breaks conformal invariance. This is none-
theless amenable to a holographic treatment, and we use�i

to define dimensionless � � ��=�i and � � �i ��. For def-
initeness, we set � ¼ 0:5 and will vary �. We track the
dynamics by solving the equations of motion of (1) nu-
merically. As discussed in the Supplemental Material [40],
we choose a gauge for �ðtÞ that keeps the initial and final
charge densities the same while the quench injects energy
into the system. Then, �ðtÞ interpolates from the initial
value,�i, to a final chemical potential,�f. We find similar

results for other values of � and also for quenches that do
not preserve the equality of the initial and final charge
densities. As we shall see, our quench is abrupt compared
with the emergent relaxation time scale.

FIG. 1 (color online). Schematic representation of the coordi-
nate system; for details, see the Supplemental Material [40].
We show data for the time evolution of Rec ðt; zÞ, following a
Gaussian quench at t ¼ 0 with � ¼ 0:15, from a superfluid black
hole initial state, as t ! �1 with Ti=Tc ¼ 0:5. The behavior
near the AdS boundary at z ¼ 0 is used to extract the dynamics
of the superfluid order parameter hOðtÞi in Figs. 2 and 3.
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Dynamical phase diagram.—In Fig. 2, we show the
dynamical phase diagram as a function of �. It displays
three regimes of late-time behavior whose asymptotics are
governed by the gauge-invariant equation

jhOðtÞij ’ jhOif þAe�i!tj; (5)

where hOif is the final order parameter,A is an amplitude

prefactor, and ! is a complex frequency in the lower half-
plane. In region III, it displays exponential decay toward
a vanishing final order parameter jhOifj ¼ 0, so that for

large � we exit the initial superfluid phase completely. In
contrast, in region II, it exhibits nonoscillatory exponential

decay with Reð!Þ ¼ 0 towards jhOifj � 0. As we shall see

later, this corresponds to the presence of a gapped ‘‘ampli-
tude’’ mode and a gapless ‘‘phase’’ mode in the superfluid
phase. However, in region I, it exhibits exponentially
damped oscillations with Reð!Þ � 0 towards jhOifj � 0,

so that for smaller � there is another regime of dynamics.
For the parameters used in Fig. 2, the transition from I to II
occurs at a critical value �� � 0:14, while the transition
from II to III occurs at �c � 0:21.
The behavior shown in Fig. 2 is reminiscent of

the dynamics of a BCS superconductor [16], despite the
fact that the holographic superfluid is strongly coupled and
that the effects of thermal damping are incorporated.
Indeed, the persistent oscillations of the integrable BCS
Hamiltonian are replaced here by an underdamped
approach toward jhOifj � 0, while the power-law damped

BCS oscillations are replaced by an exponentially
damped approach. The transition at �� provides a finite
temperature and collision dominated analogue of the col-
lisionless Landau damping transition [16].
It is illuminating to consider the phase diagram as a

function of the equilibrium temperature of the final state
black hole, Tf. Figure 3 shows that Tf increases monotoni-

cally with �, as expected. Replotting the data in Fig. 2
against Tf, we obtain the equilibrium phase diagram of the

holographic superfluid [35], with the transition from II to
III being associated with Tc and the transition from I to II
being associated with an emergent temperature scale T� �
0:81Tc, determined by ��.
Quasinormal modes.—To gain insight into the three

regimes of collective dynamics and the temperature T�,
we examine the late-time asymptotics in more detail.
As t ! 1, the dynamics is described by the quasinormal
modes (QNMs) of the late-time black holes. Each QNM
describes an approach to equilibrium in linear perturbation
theory with time dependence e�i!t. Those that dominate
the late-time dynamics have complex frequency ! closest
to the real axis and give rise to the behavior in Eq. (5).
As outlined in the Supplemental Material [40], we have
calculated the homogeneous isotropic QNMs both for the

FIG. 2. (a) Dynamical phase diagram of the holographic su-
perfluid showing the final order parameter, jhOifj, at late times.

We start in the superfluid with Ti ¼ 0:5Tc and monitor the time
evolution with increasing quench strength �. The dynamics
exhibits three regimes. For the chosen parameters, the transitions
occur at �� � 0:14 and �c � 0:21. (b) In region I, we observe
damped oscillations toward jhOifj � 0. (c) In II, we find a

nonoscillatory approach towards jhOifj � 0. (d) In III, we find

a nonoscillatory decay toward jhOifj ¼ 0. The dashed lines in

(b)–(d) correspond to the dominant quasinormal modes of the
final state black holes for temperatures Tf=Tc ¼ 0:73, 0.95, 1.48,

respectively.

FIG. 3. Quench strength � versus final state temperature Tf

using the same initial parameters as in Fig. 2. The dynamical
transition at �� � 0:14 occurs within the superfluid at a tem-
perature T� � 0:81Tc.
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normal state black holes [see Eq. (2) of the Supplemental
Material [40]] and for the superfluid black holes of
Ref. [35]. This generalizes the analysis of Amado et al.
[41], who calculated the QNMs (also for nonzero momen-
tum) in a probe approximation. For our purposes, we need
to go beyond the probe approximation and include back-
reaction; the trajectories of the dominant QNMs in the
complex ! plane are depicted in Fig. 4.

Typically, the real parts of the dominant QNM frequen-
cies correspond to oscillations, and the imaginary parts to
damping. However, as shown in Fig. 4(c), for T > Tc, the
QNMs for the normal state black hole have two complex
frequencies that are closest to the real axis. Nonetheless,
substitution into Eq. (5) with hOfi ¼ 0 yields the damped

nonoscillatory behavior found in region III of Fig. 2. As
the temperature is lowered, these dominant poles migrate
upward in the complex! plane; at the superfluid transition
temperature, Tc, they coincide at ! ¼ 0. This corre-
sponds to spontaneous U(1) symmetry breaking with the
appearance of a Goldstone mode. Below Tc, one of these
modes, the ‘‘amplitude’’ mode, travels down the imaginary
axis, consistent with time-reversal invariance under ! !
�!�, while theGoldstone ‘‘phase’’mode remains pinned at
! ¼ 0; see Fig. 4(b). The amplitude mode describes the
damped approach to a finite order parameter in region II of

Fig. 2; the Goldstone mode does not affect the dynamics in
the homogeneous and isotropic context, although it does
lead to a hydrodynamic mode at nonzero spatial momen-
tum. As the temperature is lowered, the subdominant poles
also ascend in the complex plane. At the dynamical tran-
sition temperature T�, the damping rate of the descending
amplitude mode coincides with that of the ascending sub-
dominant complex poles. For the chosen parameters, this
occurs at T� � 0:81Tc, in agreement with the nonlinear
analysis. Below T�, the previously subdominant poles
now become dominant, as shown in Fig. 4(a). The dynamics
corresponds to a damped oscillatory approach to a finite
order parameter, as found in region I. In addition to this
change in dynamics atT�, onemay also extract the variation
of the emergent time scales as a function of tempera-
ture. As shown in Figs. 4(d) and 4(e), there are three
regimes. Moreover, the extracted time scales are in quanti-
tative agreement with the late-time behavior of the
nonlinear analysis, as indicated by the dashed lines in
Figs. 2(b)–2(d). The linear response analysis provides an
excellent description over a broad time interval.
Dynamics of symmetry breaking.—The main results on

the late-time behavior of the quenched holographic super-
fluids, captured in Figs. 2–4, have a more universal appli-
cability. Recall that the location of the QNMs of the black
holes presented in Fig. 4 corresponds to the location of
poles of the retarded Green’s function for the operatorO in
the dual theory [42]. Thus, the late-time behavior is equiv-
alently described by the poles of the retarded Green’s
function that are closest to the real axis. A key point is
that the pole structure in Fig. 4 is thegeneric behavior for an
isotropic and homogeneous system with time-reversal in-
variance under ! ! �!�, which can spontaneously break
a continuous global symmetry including the presence of the
Goldstone mode at the origin and secondary quasiparticle
excitations. The value of T�, if it exists, will be given by the
temperature at which the value of Imð!Þ for the pole on the
imaginary axis and the values of those poles off the imagi-
nary axis and closest to the real axis coincide. At tempera-
tures less than T�, there could also be additional dynamical
temperature scales. For a local symmetry, we also expect
analogous phenomenology, with the Goldstone mode
replaced by the longitudinal mode of the massive vector.
It would be interesting to compute the pole structure in
othermodels [43], including nonconformal geometries, and
to explore the ramifications in experiment; see Ref. [43] for
a recent calculation of the spectral properties of the OðNÞ
model at zero temperature. Recent experiments using cold
atomic gases [4] suggest the possibility of investigating the
evolution of the excitation spectrum.
We thank P. Chesler, A.Green, S. Hartnoll, P. Figueras, K.

Landsteiner, L. Lehner, R. Myers, S. Sachdev, K. Schalm,
and D. Tong for discussions. We thank GGI, KITP, Leiden,
and PI for hospitality and acknowledge EPSRC Grant
No. EP/E018130/1 and NSF Grant No. PHY05-51164.

FIG. 4. Evolution of the QNM frequencies with temperature.
(a) T ¼ 0:73Tc. (b) T ¼ 0:95Tc. (c) T ¼ 1:48Tc. Time-reversal
invariance corresponds to ! ! �!�. (d) and (e) show the
imaginary and real parts of the dominant QNMs. i.e. the QNMs
closest to the real axis. The results show three regimes of
dynamics, in quantitative agreement with Fig. 2.
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