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Compressible ideal magnetohydrodynamics is formulated in terms of the time evolution of potential

vorticity and magnetic flux per unit mass using a compact Lie bracket notation. It is demonstrated that this

simplifies analytic solution in at least one very important situation relevant to magnetic fusion experi-

ments. Potentially important implications for analytic and numerical modelling of both laboratory and

astrophysical plasmas are also discussed.
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Introduction.—Ideal magnetohydrodynamics (MHD) is
a model for magnetized plasma where the collisionality is
low, so that dissipative effects can be neglected, yet where
the charged particles still interact sufficiently strongly via
the electromagnetic field they can be treated as a single
fluid. The ideal MHD model is applied to a wide range of
laboratory and astrophysical situations, where there are
long periods of relative quiescence in which Maxwellian
particle distributions can be approached, interrupted by
often violent transients. IdealMHD instabilities are thought
to be implicated in the triggering of the sawtooth crash
phenomenon in tokamak magnetic fusion experiments and
flaring in the solar and stellar context, see textbooks such as
[1]. The former is important as it limits the performance of
devices ultimately intended to generate nuclear power, and
the latter is implicated in the generation of solar magnetic
storms which can disrupt terrestrial power grids, naviga-
tion, and communication systems. Both these topics are
presently the subject of intensive investigation, magnetic
fusion as the multibillion dollar ITER tokamak enters the
construction phase, whereas multiple satellite missions are
collecting data on solar and stellar magnetic fields.

It is often mathematically convenient when employing
ideal MHD, to assume that the plasma fluid is incompress-
ible, but the reality in the above-mentioned situations is
that the plasma density varies by one or more orders of
magnitude over the region of interest. This work presents
what is believed to be a novel, mathematically convenient
formulation of compressible MHD.

The equations of ideal MHD as usually formulated are
well known and are to be found in many textbooks; see,
e.g., Ref. [1], Sec. 4.3. As explained there, the problem
admits a variational formulation which is of great utility for
practical stability analysis, and a functional Hamiltonian
formulation in terms of Lie derivatives [2], of great
theoretical importance for understanding stability and
evolution. More direct approaches to ideal MHD stability
are also now used ([1], Sec. 6), and the results presently to
be described are more relevant to the latter school.

The potential vorticity is the ordinary vorticity ! of the
plasma (the curl of the mean flow U of ions and electrons),

divided by the mass density �, i.e., ~! ¼ !=�. The possi-
bility of combining the equation for the time evolution of
vorticity with that for density evolution to give a simple
equation for the rate of change of potential vorticity, was
first realized for a classical fluid by Helmholtz as described
by Ref. [3], Sec. 146, in the mid-19th century. In the mid-
20th century, Walén, according to Ref. [4], Sec. 4-2, was
the first to realize that a mathematically identical relation
governed the evolution of the magnetic flux per unit mass
~B ¼ B=� where B is the magnetic field. For incompress-
ible plasma, Arnold and Khesin [5], Sec. I.10.C, combined
these results in late-20th century to give an elegant for-
mulation of ideal MHD in terms of Lie brackets of vector
fields. The Lie bracket is here the generalization to arbi-
trary vector fields of the ‘‘flux-freezing’’ operator, i.e., the
operator which determines the advection of divergence-
free (solenoidal) fields B and ! [6], Sec. 3.8. The novelty
of the present work is to extend this formalism to
compressible MHD and explore the implications. In par-
ticular, the peculiar, coordinate invariant nature of the Lie
bracket makes it easy to generalize solutions to arbitrary
geometry in some cases, both analytically and numerically.
The next section contains a detailed mathematical deri-

vation of the key formula. A discussion of the implications
for analytic and numerical solution follows, and finally
some important possible applications are summarized.
Mathematics.—In terms of the operators of classical

vector mechanics, the Lie derivative of a vector can be
defined as

L uðvÞ ¼ r� ðu� vÞ � ur � vþ vr � u; (1)

which will help explain the equivalence with the vector
advection operator, the first term on the right. Indeed,
Walén’s result for magnetic induction in a perfectly con-
ducting medium is

@~B

@t
¼ LUð~BÞ: (2)

Introducing component notation for vectors in general
nonorthogonal coordinate systems, as described in many
textbooks, e.g., Ref. [7], it turns out that the Jacobians
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thereby introduced (of the coordinate transformation from
Cartesians), cancel among the terms in Eq. (1), so that

L uðvÞi ¼ vk @u
i

@xk
� uk

@vi

@xk
; (3)

where uk, vk are the contravariant components of the
vectors u, v, respectively, and the summation convention
is implied. It follows that

L uðvÞ ¼ �LvðuÞ ¼ �½u; v�; (4)

where [.,.] denotes the Lie bracket of Schutz [8].
It will now be proved that the equation for the evolution

of potential vorticity in compressible ideal MHD may be
written

@ ~!

@t
¼ LUð ~!Þ �L~Bð~JÞ; (5)

where the potential current ~J ¼ r� B=�. The customary
vorticity equation in ideal MHD is

@!

@t
¼ r� ðU�!Þ þ r��rp

�2
þr�

�
J� B

�

�
; (6)

where vorticity! ¼ � ~! ¼ r� U, and current J ¼ �~J ¼
r�B ¼ r� ð�~BÞ. When proceeding further, it is con-
venient and often physically justifiable, by a barotropic or
isentropic assumption, to neglect the term in the pressure
p, and if not, the resulting additional term is easily repre-
sentable in general geometry.

It follows that to establish the equivalence of Eqs. (5)
and (6), it is necessary to show that � ¼ 0, where

� ¼ 1

�
r�

�
B� J

�

�
�L~Bð~JÞ: (7)

Now, Eq. (7) is a vector equation, so validity in any
coordinate frame implies validity in all; hence, it is suffi-
cient to establish the result in Cartesian coordinates, where

� ¼ 1

�
r� ð�~B� ~JÞ þ ~B � r~J� ~J � r~B: (8)

The curl term may be expanded using the identity

1

�
r� ð�vÞ ¼ R� vþr� v; (9)

where R ¼ r�=�. Setting v ¼ ~B� ~J, and expanding the
resulting curl-cross operation, there is cancellation of the
two terms from the Lie derivative, leaving

� ¼ ~Br � ~J� ~Jr � ~BþR� ð~B� ~JÞ: (10)

Since r � J ¼ 0, it follows that

r � ~J ¼ �R � ~J; (11)

and likewise since r �B ¼ 0,

r � ~B ¼ �R � ~B: (12)

Substituting Eqs. (11) and (12) into Eq. (10), and expand-
ing the last term as dot products, shows that, as required
� ¼ 0.
The set of evolution equations is completed by mass

conservation

@�

@t
¼ �r � ð�UÞ: (13)

This does not involve a vector Lie derivative, but, using the
standard expression for the divergence operator in general
curvilinear coordinates, it may be written

@�

@t
¼ � 1ffiffiffi

g
p @ð� ffiffiffi

g
p

UkÞ
@xk

; (14)

where
ffiffiffi
g

p
is the Jacobian and the gik is the metric tensor,

which upon introducing ~� ¼ �
ffiffiffi
g

p
may be written

@~�

@t
¼ � @ð~�UkÞ

@xk
; (15)

provided that
ffiffiffi
g

p
does not change with time. Like the

neglect of the pressure term above, this latter inessential
assumption is often physically reasonable.
Unfortunately, the ideal MHD equations are here com-

pleted by the two definitions of potential vorticity and
potential current, which do explicitly contain metric infor-
mation, viz.

~� ~!i ¼ eikl
@ðglnUnÞ

@xk
; (16)

and

~�~Ji ¼ eikl
@

@xk

�
glnffiffiffi
g

p ~� ~Bn

�
: (17)

In the above, eikl ¼ eikl is the alternating symbol, taking
values 1, �1, or 0, depending on whether (ikl) is an even,
odd, or nonpermutation of (123). Finally, note that Eqs. (2)
and (15) together ensure that r �B ¼ 0, only if initially

@ð~� ~BkÞ
@xk

¼ 0: (18)

Solving the new system.—The new model system for
ideal barotropic compressible MHD evolution consists of
Eq. (2), (5), and (15)–(17). The simplification of the first
three has been gained at the expense of complicating the
last two ‘‘static’’ relations. Nonetheless, evolution equa-
tions are harder to treat numerically, because any errors in
the discretization tend to combine over time. Moreover,
observing that equations of the form Eq. (2) have the
solution in Lagrangian coordinates �

~B ið�ðtÞ; tÞ¼ @�i

@�j
0

~Bjð�0;0Þ; where
d�

dt
¼ U; �ð0Þ ¼ �0

(19)

offers the possibility of using radically different, ephem-
eral particle-in-cell (EPIC) schemes [9] for the time
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update. To this end, the term nonlinear in the magnetic field

is better expressed as þL~Jð~BÞ, so that the change in ~B

calculated by EPIC under the ‘‘flow’’ d�=dt ¼ ~J may be
used in a split update of ~!. By employing EPIC or similar
algorithms it is also possible to envisage schemes where
the mesh remains logically fixed while the metric changes
with each field update.

Using more conventional finite difference or finite ele-
ment schemes, it will be evident that problems solved in
Cartesian geometry will test all aspects of the coding of the
evolutionary equations. Thus, there is considerable com-
putational advantage to be gained here also. There is obvi-
ously the concern that the magnetic field computed may not
be accurately solenoidal, but this is an issue for many other
discretizations also. The main difficulty is in the inversion
of Eq. (16) to give the velocity field U corresponding to a

freshly evolved potential vorticity [since ~B itself is
evolved, Eq. (17) does not need to be inverted]. However,
this inversion, together with the computation of the irrota-
tional part ofU, is a classical hydrodynamical problem, and
a variety of strategies may be found in the literature.
On present machine architectures, introducing the vector
potential for velocity then solving the coupled system
Eqs. (15) and (16) by a pseudotimestepping algorithm is
probably to be preferred. Similar numerical solution strat-
egies were successfully employed in electromagnetics by
the current author and collaborators [10,11]. Vorticity
formulations are common in plasma modeling as they are
helpful in several physically relevant limits, and in particu-
lar, a vorticity formulation has already been used success-
fully in nonlinear, compressible MHD [12].

Turning to analytic results, first consider MHD equilib-
rium solutions with no time dependence andU ¼ 0, imply-

ing L~Bð~JÞ ¼ 0. In the case of force-free fields, meaning

J / B, substituting ~J ¼ �~B in the Lie derivative in com-
ponent form show this is a solution provided B � r� ¼ 0,
i.e., exactly the same constraint on � that follows from the
solenoidal constraint onB and J when seeking the solution
J ¼ �B. Hydromagnetic force-free solutions, with the
additional constraint that U ¼ �2B, now cease to exist,
however, because U is not solenoidal unless the flow is
incompressible.

Moving now to time dependent solutions, interest
attaches to the ‘‘flux compression’’ solution [13],
Sec. 4.6, which is postulated on purely kinematic grounds
[i.e., from Eq. (2)] and which may be written

B ¼ cBð0; 0; �ðx; y; tÞÞ (20)

for a compressible flow U with density � provided that
U ¼ ðUxðx; y; tÞ; Uyðx; y; tÞ; 0Þ. Here, cB is an arbitrary

constant and (x, y, z) are the usual Cartesian coordinates.
This solution is of practical importance for fusion experi-
ments, where external magnets are used to generate a time
dependent flux designed so as to compress plasma
‘‘frozen’’to it. It is easy to establish that if B ¼ cB�ẑ, then

J �B=c2B ¼ ðr�� ẑÞ � �ẑ ¼ �rð�2=2Þ; (21)

i.e., the associated Lorentz force does not generate vortic-
ity and the more complicated dynamics which might
follow.
The simple form of the new evolution equations enables

a generalization of the flux-compression solution to gen-
eral curvilinear coordinates. It is important to emphasize
that the following is not simply reexpressing B ¼ �ẑ in
different coordinate systems, nor is there a loss of general-
ity in choosing units for density such that cB ¼ 1. The
obvious generalization is to take ~B3 ¼ 1ð ~B1 ¼ ~B2 ¼ 0Þ,
implying a 2D density to ensure a solenoidal B, since
Eq. (18) requires @~�=@x3 ¼ 0. The next step is to ensure

thatL~Bð~JÞ ¼ 0, which as may be seen using the coordinate
form Eq. (3), simply requires @~Jj=@x3 ¼ 0. Similarly

LUð~BÞ ¼ 0 may be satisfied by a flow with @Uj=@x3 ¼ 0
(note that U3 � 0 is therefore allowed). Last, from the
‘‘static’’ relations, it will be seen that a solution with ~Jj

independent of x3 is possible provided @gik=@x
3 ¼ 0. The

general geometry analogue of Eq. (21) may now be com-
puted as

J� Bi

�
¼ � @

@xi
ðc2Bg33�Þ; (22)

confirming that the Lorentz force per unit mass is irrota-
tional and therefore does not produce or reduce vorticity.
Thus, suppose that the equations of 2D compressible

hydrodynamics subject to an additional force Eq. (22) have
the time dependent solution

Ui ¼ ðU1ðx1; x2; tÞ; U2ðx1; x2; tÞ; U3ðx1; x2; tÞÞ;
� ¼ �ðx1; x2; tÞ; (23)

then the preceding paragraph shows that no vorticity
is generated by the time dependent field B given by
B1 ¼ B2 ¼ 0, B3 ¼ cB�, in any coordinate system where
@gik=@x

3 ¼ 0. Or equivalently, in the language of differ-

ential geometry [8], Sec. 3.11, if ~B is a Killing vector, there
is a flux-compression solution.
The Killing vectors for 3D are textbook [6] and there are

three main possibilities, corresponding to the cases where
everywhere B is parallel to a coordinate axis, either (i) any
Cartesian axis, or (ii) polar angle direction in cylindrical
coordinates, or (iii) a helical axis in a system of helical
coordinates with constant pitch.
To answer possible questions about the existence of 2D

solutions subject to a force proportional to density as in
Eq. (22), observe that the pressure force is�rp=�. Hence,
if p / �� where the polytropic index � ¼ 2, at least in
Cartesians this force takes the same form as Lorentz. The
mathematical theory establishing the existence of (irrota-
tional) flow applies for arbitrary � [14], Sec. 7.4.
Other possibilities for new analytic solutions outside of

~B3 ¼ 1 are opened up when it is realized that Clebsch
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variables [7], Sec. 5, may be used to represent a solenoidal
vector field as a single contravariant component.
Alternatively, the vector potential may be introduced,
leading to an interesting calculus involving R, consistent
with the fact that exponentially varying density profiles
(implying constant R) are often studied analytically.

Applications.—For discharge stability in fusion physics,
flux-compression solutions have not historically been rele-
vant because the associated Lorentz force is outward from
a region of high density. However, advanced tokamak
equilibria may have regions of density inversion, and
high rates of velocity shear may contribute to confinement
via the 1

2rU2 Bernouilli pressure term. Hence the above,

new analytic flux-compression solutions may represent a
nonlinear development of interchange modes [15],
Sec. 12.1.2, in regions where either the confining field
has approximately constant twist corresponding to
Killing vector (iii), or is approximately toroidal, vector
(ii). These solutions, with or without vorticity, would
seem to represent efficient and rapid means whereby
mass and hence heat might escape from a discharge, so
might be implicated in situations where there is rapid
transient cooling, such as the sawtooth crash in the center
of the tokamak discharge (constant field-line twist), and
edge localized modes in divertor discharges (nearly toroi-
dal field lines). The preceding section has also indicated
that the new formalism could be used efficiently to simu-
late ideal MHD evolution of discharges in generalized
coordinates, say defined by an arbitrary MHD equilibrium.

In astrophysics, observed magnetic fields usually exhibit
a significant degree of disorder, so it is unclear how impor-
tant the new flux-compression solutions might be, as they
rely on at least a degree of coordinate invariance. It is
speculated that, in stars with a strong internal toroidal field
(such as the Sun is believed to possess), the rotationally
symmetric solution corresponding to Killing vector
(ii) might help model the convection pattern, accounting
for the largely latitudinal variation of the solar differential
rotation. Regardless, it should be helpful that, in the new
equations, the field geometry appears only in the state
equations. It will, for example, be simpler to generate
more realistic solutions from symmetric ones by varying
gik starting with the unit tensor. This could be useful,
say, for modeling sunspot penumbras both analytically
and computationally, since there the magnetic field is

predominantly directed radially outwards in the horizontal
direction.
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