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The dynamics and stability of brittle cracks are not yet fully understood. Here we use the Willis-

Movchan 3D linear perturbation formalism [J. Mech. Phys. Solids 45, 591 (1997)] to study the out-of-

plane stability of planar crack fronts in the framework of linear elastic fracture mechanics. We discuss a

minimal scenario in which linearly unstable crack front corrugations might emerge above a critical front

propagation speed. We calculate this speed as a function of Poisson’s ratio and show that corrugations

propagate along the crack front at nearly the Rayleigh wave speed. Finally, we hypothesize about a

possible relation between such corrugations and the long-standing problem of crack branching.
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Crack propagation is a major vehicle for material failure
[1,2]. Yet a complete theoretical understanding of the
dynamics and stability of rapidly propagating tensile
cracks in brittle materials is lacking [3,4]. In the last few
decades it has been experimentally established that rapid
cracks undergo various types of dynamic instabilities.
Planar crack fronts can experience a 3D microbranching
instability [5–8], a 2D oscillatory instability [9], distributed
microcracking in their vicinity [10–13], and support prop-
agating 3D waves, with both in-plane and out-of-plane
components [14–17].

Recently, progress in understanding these phenomena
has been made. For example, linear in-plane crack front
waves have been theoretically predicted [18–21]; dynamic
crack branching has been observed in 2D numerical simu-
lations [22–25]; energetic bounds on 2D crack branching
have been derived [26–30]; and the 2D oscillatory insta-
bility has been explained based on intrinsic nonlinearities
[31,32], whose role in dynamic fracture has been high-
lighted in Refs. [33–39]. While progress in understanding
3D crack front instabilities in the context of quasistatic
mixed-mode fracture [40,41] and dynamic tensile fracture
[42] has been made very recently, the 3D out-of-plane
nature of crack front waves [14] and the microbranching
instability [4] remain theoretically elusive.

In this Letter we study the out-of-plane stability of planar
crack fronts in the framework of linear elastic fracture
mechanics using the Willis-Movchan 3D linear perturba-
tion formalism [43–47]. The emergence of out-of-plane
crack corrugations within a minimal scenario is discussed.
We calculate the critical propagation speed for the onset of
such corrugations, which propagate along the crack front at
nearly the Rayleigh wave speed, as a function of Poisson’s
ratio. We then speculate about a possible relation between
these corrugations and the 3D microbranching instability

and its fractographic consequences. Our work is directly
inspired by Ref. [42].
To set the stage for our stability analysis, consider a

planar crack propagating steadily in an isotropic linear
elastic solid and introduce small perturbations that give
rise to the following perturbed crack surface configuration

S�ðtÞ ¼ fx:�1< x1 < vtþ ��ðx2; tÞ;
�1< x2 <1; x3 ¼ �c ðx1; x2; tÞg; (1)

where fx1; x2; x3g is a fixed Cartesian coordinate system
and v is a constant propagation speed in the x1-direction,
smaller than the Rayleigh wave speed cR. The smooth and
bounded functions � and c describe in-plane and out-of-
plane perturbations, respectively, and 0< � � 1 is a small
dimensionless amplitude. Note that in Eq. (1) we use 1 to
schematically represent finite macroscopic length scales
that are much larger than any length scale characterizing
the perturbations. Such scales will be explicitly invoked
below and will play a role in our analysis.
The isotropic linear elastic solid is characterized by a

stress field � and a displacement field u that satisfy the
momentum balance equation r � � ¼ �@ttu, where � is
the mass density, and are related through Hooke’s law � ¼
�tr"Iþ 2�", where " ¼ 1

2 ½ruþ ðruÞT�. Here I is the

identity tensor, and � and� are the Lamé constants that are
related to the dilatational and shear wave speeds through

cd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�þ 2�Þ=�p

and cs ¼
ffiffiffiffiffiffiffiffiffiffi
�=�

p
, respectively. The

crack surfaces are traction-free �ijnj ¼ 0, where i ¼
1; 2; 3 and n is an outward unit normal to S�ðtÞ, and
some external conditions are specified on the outer bounda-
ries of the solid. This formulation constitutes linear elastic
fracture mechanics (LEFM) [1].
A fundamental prediction of this framework is that the

asymptotic crack front expansion of the stress field � is
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dominated by a universal square-root singularity in
the distance from the front. For the unperturbed crack
[Eq. (1) with � ¼ 0], under pure (symmetric) tensile load-
ing conditions, the expansion of the tensile stress compo-
nent ahead of the front takes the form [1]

�ð0Þ
33 ’ Kð0Þ

I ð2�XÞ�1=2 þ Að0Þ
3 X1=2 for X ! 0þ; (2)

where X ¼ x1 � vt. Here Kð0Þ
I is the mode I (tensile) stress

intensity factor (SIF), a fundamental quantity that quanti-

fies the intensity of the linear elastic singularity; Að0Þ
3 is the

coefficient of the subleading term to be used below; and the
superscript (0) refers to the unperturbed crack. Note that

Kð0Þ
I and Að0Þ

3 are assumed to be independent of x2 and t.
The crack front perturbations described in Eq. (1) break
both the translational symmetry along x2 and the x3!�x3
symmetry of the global loading. Therefore, the stress �
associated with the perturbed crack admits the same
asymptotic expansion (ahead of the front, along its local
tangent) as in Eq. (2), but now KIðx2; tÞ depends on x2 and
t, and there exist also mode II (in-plane shear) and mode III
(tearing) singular contributions proportional to KIIðx2; tÞ
and KIIIðx2; tÞ, respectively.

The major goal of a linear perturbation theory is to

calculate the SIFs KI;II;III to linear order in �: Kjðx2; tÞ ¼
Kð0Þ

I �jI þ �Kð1Þ
j ðx2; tÞ, with j ¼ I, II, III. This problem

was solved by Willis and Movchan in 1997, yielding [45]

Kð1Þ
I ðx2; tÞ ¼ Q33 ��Kð0Þ

I þ
ffiffiffiffiffiffiffiffiffi
�=2

p
�Að0Þ

3 ; (3)

Kð1Þ
II ðx2; tÞ ¼ ½��13Q11 � c � �!13@x1c

��Kð0Þ
I

��13c
�Að0Þ

3 þ TIIðx2; tÞ; (4)

where * stands for a convolution in (x2, t) and c � is c
evaluated at the crack front. We do not present here KIII

because it plays no role in what follows.
Let us discuss the physical meaning of the various terms

in Eqs. (3) and (4). Qij are weight functions that quantify

the nonlocal (both in space and time) elastodynamic inter-
action of the crack front with itself. They admit explicit
Fourier transform representations �Qij, and are homogene-

ous functions of degree 1 (see Refs. [42,45–48] for details).
TIIðx2; tÞ involves convolutions of additional weight func-
tions with the ‘‘history’’ of out-of-plane perturbations, i.e.,
c for X < 0, and effective tractions associated with zero
order stresses [45,48]. The other terms are purely geomet-
ric in nature and correspond to local rotations and trans-
lations of the crack front. Finally, the kinematic functions
�13ðvÞ and !13ðvÞ take the form

�13ðvÞ ¼ �2	ð
� 	Þð1þ 
2Þ=RðvÞ; (5)

!13ðvÞ ¼ �½8	
� ð1þ 
2Þð2þ 	2 þ 	
Þ�=RðvÞ; (6)

where 	2¼1�v2=c2d, 

2¼1�v2=c2s , and RðvÞ¼4	
�

ð1þ
2Þ2 (whose root is the Rayleigh wave speed cR).

In order to prepare Eqs. (3) and (4) for the stability
analysis to follow, we first Fourier transform all relevant
functions with respect to (x2, t) such that �fð�2; !Þ is the
transform of fðx2; tÞ. Noting that to leading order in � one
has @x1c

� ¼ v�1@tc
�, the wave number of the perturba-

tion c in the propagation direction x1 is readily given by
�1 ¼ !=v. In a minimal scenario, a crack problem features
one macroscopic length scale L and one macroscopic stress

scale �1. Dimensional analysis then implies that Kð0Þ
I �

�1 ffiffiffiffi
L

p
and Að0Þ

3 ¼ Kð0Þ
I a3ðvÞ=L, where a3ðvÞ is a real

dimensionless function. Furthermore, the Fourier trans-
form of TIIðx2; tÞ can be expressed as

�TIIð�2; !Þ ¼ Kð0Þ
I

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�2j=L

q
�tIIð!=j�2j; j�2jLÞ �c �ð�2; !Þ; (7)

where �tII is a complex function.
Therefore, the Fourier space version of Eqs. (3) and (4)

reads

�Kð1Þ
II ð�2;!Þ ¼ ½�j�2j�13 �q11ð!=j�2jÞþ ið!=vÞ!13

��13a3=Lþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�2j=L

q
�tIIð!=j�2j; j�2jLÞ� �c �ð�2;!ÞKð0Þ

I ;

(8)

�Kð1Þ
I ð�2; !Þ ¼

�
j�2j �q33ð!=j�2jÞ þ

ffiffiffiffi
�

2

r
a3
L

�
��ð�2; !ÞKð0Þ

I ;

(9)

where we used the homogeneity property of �Q to define
�Q11;33ð�2; !Þ ¼ j�2j �q11;33ð!=j�2jÞ. Equations (8) and (9),

which serve as a basis for our stability analysis, show that
in-plane and out-of-plane perturbations are decoupled to
first order in � [45], though experiments demonstrate such
a coupling [14], suggesting the intervention of higher order
corrections.
In order to study the out-of-plane stability of the crack,

we need an equation of motion for the front in terms of the
SIFs. It is well-established that under quasistatic and 2D
(i.e., when the front can be treated as a tip) conditions, the
principle of local symmetry (PLS) KII ¼ 0 [49] is valid
[50,51]. This implies that no intrinsic nonlinear scales near
the crack front play a role in crack instabilities and hence
that crack patterns are always determined by extrinsic
(typically geometric) length scales. However, it was
recently shown that for strongly dynamic conditions (i.e.,
v of the order of cR) in 2D, a generalization of the PLS is
required and intrinsic nonlinear scales play a decisive role
in rapid crack instabilities [31,32]. The role of intrinsic
length scales in the context of quasistatic 3D crack propa-
gation under mixed-mode KI þ KIII conditions has also
been demonstrated recently [40,41].
Here, however, we seek a minimal scenario for the emer-

gence of out-of-plane instabilities and hencewish to deviate
as little as possible from LEFM. Therefore, we adopt the
PLS, KII ¼ 0, even though we consider 3D cracks under
dynamic conditions. Finally, as a crack propagation condi-
tion we use the generalized Griffith criterion, quantifying
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the balance between energy flowing into the crack front
region and the dissipation associated with the fracture pro-
cess [1], which together with the PLS reads [52]

	ð1� 
2ÞK2
I =½2�RðvÞ� ¼ � and KII ¼ 0: (10)

Here � is the fracture energy, assumed to be independent of
v. Note that, in general, the energy balance relation also
contains terms proportional toK2

II andK
2
III [1]; the former is

omitted due to the KII ¼ 0 condition and the latter because
it does not contribute to order �.

Before discussing the out-of-plane stability, we briefly
consider the in-plane dynamics of the crack front [19].
Expanding the energy balance relation in Eq. (10) and

using �Kð1Þ
I ð�2; !Þ of Eq. (9), we obtain

2 �q33

�
!

j�2j
�
� i

!

j�2j@v ln
�
	ð1� 
2Þ

RðvÞ
�
þ

ffiffiffiffiffiffiffi
2�

p
a3

j�2jL ¼ 0: (11)

In the limit j�2jL � 1 this equation admits a real solution
for every v, giving rise to a dispersion relation of the
form !=j�2j ¼ sfðvÞ þOð1=j�2jLÞ, where c2f ¼ s2f þ v2

is the propagation speed in a fixed coordinate system (sf is

the propagation speed seen by an observer moving with the
crack front). These are the well-known in-plane crack front
waves [18–21], whose speed cf is plotted in Fig. 1(b). Note

that while the linear perturbation theory determines a
dispersion relation in terms of ! and j�2j, it cannot select
them separately. Moreover, although in-plane crack fronts
might play a role in fracture dynamics, they cannot leave
fractographic marks by themselves, which entails an out-
of-plane component.

To study the out-of-plane stability, we apply the PLS to

Eq. (8), i.e., set �Kð1Þ
II ¼ 0. The outcome is a complex equa-

tion for a complex variable!=j�2j and a real variable j�2jL.
We expect �Kð1Þ

II ¼ 0 to be equivalent to

<½!=j�2j�¼hðv;j�2jLÞ; =½!=j�2j�¼gðv;j�2jLÞ; (12)

where hð�Þ and gð�Þ are in principle calculable. The crack
stability against out-of-plane perturbations is determined by
the sign of =½!=j�2j�. For =½!=j�2j�< 0 perturbations are
attenuated and the crack is stable. For =½!=j�2j�> 0 per-
turbations are amplified and the crack is unstable, develop-
ing surface corrugations. Therefore, the instability threshold
is determined by =½!=j�2j� ¼ 0 [50,51]. Before we per-
form this analysis, let us discuss two possible scenarios.
In the first, we set j�2jL ! 1. Therefore, at the instability
threshold, the second equation in Eq. (12) reads gðv;1Þ¼0.
The solution, which determines the critical speed vc for
instability, is then substituted into the first equation in
Eq. (12), yielding <½!=j�2j� ¼ hðvc;1Þ, which is a dis-
persion relation for corrugation waves (similar to the one
derived for in-plane front waves). In the second scenario, we
keep j�2jL finite (albeit large) and obtain gðv; j�2jLÞ ¼ 0
and <½!=j�2j� ¼ hðv; j�2jLÞ. Here both ! and j�2j are
being selected, and the critical speed vc (if it exists) is
determined from a solvability condition. In this case, the
wave number in the propagation direction, �1 ¼ !=v, is
also selected and the complete crack surface topography is
determined.
To test these scenarios we use the stability condition

=½!=j�2j� ¼ 0 to obtain (for v < cR) [48]

2=½ �q11ðsÞ� ¼ s@v ln½
ð1� 
2Þ=RðvÞ�; (13)

where s � !=j�2j is now real. Substituting this result in
�Kð1Þ
II ¼ 0 [see Eq. (8)], we obtain

<½ �q11ðsÞ� ¼ � a3
j�2jLþ<½�tIIðs; j�2jLÞ�

�13

ffiffiffiffiffiffiffiffiffiffiffiffij�2jL
p ; (14)

!̂13 ¼ �v=½�tIIðs; j�2jLÞ�=ðs
ffiffiffiffiffiffiffiffiffiffiffiffi
j�2jL

q
Þ; (15)

where 2!̂13 � 2!13 ��13v@v ln½
ð1� 
2Þ=RðvÞ�.
To analyze these equations within the first scenario we set

j�2jL ! 1 such that Eq. (15) becomes !̂13ðvÞ ¼ 0. This
equation admits no solution as !̂13ðvÞ< 0 for every v < cR.
Indeed, itwas recently demonstrated thatwithin this scenario
there exist no solutions with real !=j�2j and that out-of-
plane perturbations experience attenuation for every v [42].
To test the second scenario, we propose an iterative scheme
for solving Eqs. (14) and (15). As macroscopic length scales
are assumed to be much larger than any length scale charac-
terizing the perturbations, to leading order we can set
j�2jL ! 1 on the right-hand side of Eq. (14), obtaining
<½ �q11ðsÞ� ’ 0. If the latter admits a solution, then s is

determined to order Oð1= ffiffiffiffiffiffiffiffiffiffiffiffij�2jL
p Þ and Eq. (15) yieldsffiffiffiffiffiffiffiffiffiffiffiffij�2jL

p ¼ �v=½�tIIðs;1Þ�=ðs!̂13Þ, which determines j�2j
and requires the calculation of �tII. Once �tII is known, the

FIG. 1 (color online). (a) <½ �q11� vs s=cs with � ¼ 0:25 for
v ¼ 0:3cR (solid line, no zero crossing) and v ¼ 0:7cR (dashed
line, zero crossing). (b) The normalized crack corrugation wave
speed cc=cR vs v=cR for � ¼ 0:25 (solid blue line) and � ¼ 0:4
(dashed blue line). For completeness, we also show the normal-
ized in-plane crack front wave speed cf=cR for � ¼ 0:25 (dotted

red line) and � ¼ 0:4 (dotted-dashed red line).
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steps can be iterated to produce higher order corrections in

powers of 1=
ffiffiffiffiffiffiffiffiffiffiffiffij�2jL

p
. Here, however, we do not calculate �tII,

which is a complex function that depends on the geometry
and loading conditions of any particular crack problem, and
hence truncate the iterative scheme at its first step,
<½ �q11ðsÞ� ’ 0, assuming that the next steps yield a solution
for j�2j.

To explore this scenario we look for solutions of
<½ �q11ðsÞ� ¼ 0, which we denote by sc. It turns out that a
real solution sc exists only above a critical propagation speed
vc, which is a function of Poisson’s ratio� ¼ �=½2ð�þ�Þ�.
Examples are shown in Fig. 1(a). Once sc is known for a
given v, the crack corrugation wave speed cc, in a fixed
coordinate system, is given by c2c ¼ s2c þ v2. In Fig. 1(b)
cc=cR is plotted vsv=cR for twovalues of� andv 	 vc. cc is
nearly the Rayleigh wave speed cR. For completeness, we
also plot the in-plane crack front wave speed cf, which exists

for every v. In Fig. 2 we show the critical speed for the onset
of out-of-plane corrugations vc as a function of Poisson’s
ratio �. This constitutes our main result: the existence of an
out-of-plane crack instability above a critical speed within a
minimal scenario, accompanied by the propagation of corru-
gation waves along the crack front. vc is a monotonically
decreasing function of �, which vanishes above �c ’ 0:4.

Our findings might be directly related to the experiments
of Refs. [15,16], where small out-of-plane perturbations of
a crack’s front in soda-lime glass were reported to decay
exponentially, implying stability (these authors also
reported the existence of persistent, nondecaying, out-of-
plane front waves for sufficiently large perturbations in
Ref. [14]). The propagation front speed for these measure-
ments was below vc for glass (� ’ 0:2, cf. Fig. 2), wherewe
indeed predict linear stability against small out-of-plane
perturbations.

Might the out-of-plane corrugations discussed here also
be related to the microbranching instability? Providing a
definite answer goes well beyond the scope of the present
work. It is, however, conceivable that the two phenomena
are related. A microbranching event, like the corrugations

discussed above, breaks the translational symmetry along
x2 (it is localized along this dimension [7]) and goes out of
plane. One may then speculate that the out-of-plane front
instability may trigger the microbranching instability, or if
the two instabilities are of different origins, that one may
amplify or suppress the other [53].
To see what the implications of this speculation might be,

we need an estimate for the critical speed formicrobranching
vb. In the absence of a better alternative, we use the energetic
bound for 2D branching [30], which is shown in Fig. 2
together with vc. The two curves intersect at � ’ 0:32.
Consider materials with � & 0:32 (e.g., � ’ 0:2 for silica
glass) where vb < vc. For v < vb < vc out-of-plane pertur-
bations are stable and branching is not possible. For vb <
v < vc out-of-plane perturbations are still stable, though
branching is energetically possible. Finally, for vb<vc<v
out-of-plane perturbations are unstable and branching is
energetically possible. Consider then materials with
� * 0:32 (e.g., � ’ 0:35 for Plexiglas or � ’ 0:5 for elasto-
mer gels). Here vc < vb and there exists a regime with
vc<v<vb, where out-of-plane perturbations are unstable,
while branching is energetically prohibited.
As corrugations and branching events leave traces on

fracture surfaces, the different v regimes described above
might be related to the common mirror-mist-hackle transi-
tion, a fractographic characterization that corresponds to
progressive increase in surface roughness with increasing
crack speed [54]. For example, in a regime where the crack
front is stable against both corrugations and branching, we
expect mirror-like surfaces. For � > �c ’ 0:4, where such a
regime does not exist, we do not expect mirror-like surfaces
even at very low propagation speeds. In a regimewhere only
one of the instabilities can be triggered, typically at higher
v’s, surface roughness will emerge, which might correspond
to themist zone.Whenboth instabilities can take place, at yet
higher v’s, we expect denser surface features and enhanced
roughness, which might correspond to the hackle zone. We
hope to further explore these issues in the future.
While our analysis, assuming LEFM and the PLS,

implies that the scale of out-of-plane corrugations is deter-
mined by an extrinsic (geometric or loading-inherited)
length scale L, in practice such corrugations typically
feature much smaller scales [4,54]. Nevertheless, we
believe our analysis also remains relevant when intrinsic
length scales, associated with near crack front nonlineari-
ties, microstructures, and dissipation, play a role in select-
ing the scales of corrugations. The idea is that the SIFs
uniquely couple the large scales of a crack problem to the
small scales near the front. Therefore, whenever a region
where the square-root singular SIFs’ fields dominate the
mechanical response exists—true for a broad range of
materials [1]—the calculation of the SIFs in Eqs. (8) and
(9) is required. Moreover, we expect any generalization of
the PLS—incorporating the role of intrinsic scales—to be
represented in terms similar to �tII and thus the structure of
Eqs. (14) and (15) to remain valid, where the role of L is
played now by an intrinsic length scale.

FIG. 2 (color online). The normalized critical speed vc=cR for
the onset of out-of-plane instability (solid blue line) and the
normalized critical speed vb=cR above which 2D branching is
energetically possible vs � (dashed red line) [30].
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To conclude, we demonstrate—within a minimal linear
elastic fracture mechanics scenario—the existence of an
out-of-plane crack front instability characterized by a
Poisson’s ratio dependent critical propagation speed. We
speculate on a possible relation between this instability and
the 3D microbranching instability, and its fractographic
implications. Extending our analysis to explicitly include
intrinsic nonlinear effects [31,32] and finite geometric
scales is an important direction for future investigation.
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