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We describe the formation of highly degenerate, Landau-level-like amplified states in a strained

photonic honeycomb lattice in which amplification breaks the sublattice symmetry. As a consequence

of the parity anomaly, the zeroth Landau level is localized on a single sublattice and possesses an

enhanced or reduced amplification rate. The selection of the sublattice depends on the strain orientation

but is independent of the valley. The spectral properties of the higher Landau levels are constrained by a

generalized time-reversal symmetry. In the setting of two-dimensional photonic crystal lasers, the

anomaly affects the mode selection and lasing threshold while in three-dimensional photonic lattices it

can be probed via the beam dynamics.
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Nonuniform deformations of the honeycomb lattice of
graphene result in a pseudomagnetic field which deflects
particles in analogy to the Lorentz force, with small
amounts of strain producing fields that are large enough
to create well-defined Landau levels in the low-energy
range of the spectrum [1–4]. Here we describe how the
addition of gain in an analogous photonic setting results in
the formation of highly degenerate amplifying Landau
levels, which can provide the platform for a laser with
macroscopic mode competition. The spectral properties
of these levels become intriguing when the gain breaks
the sublattice symmetry. Due to the parity anomaly [5–7],
the amplification of the zeroth Landau level is dictated by
one of the two sublattices, which here is selected depend-
ing on the strain orientation. Moreover, a reflection sym-
metry enforces that the instances of this level in the two
k-space valleys behave identically. In contrast, the higher
Landau levels are constrained by a generalized time-
reversal symmetry. Their amplification rate equals the
average rate of the two sublattices, up to a finite threshold
of the imbalance at which two levels coalesce and their
rates bifurcate.

These observations allow us to detect the parity anomaly
via the anomalous amplification or decay of the zeroth
Landau level. When the system is operated as a two-
dimensional photonic crystal laser, the lasing threshold is
set either by the zeroth or by the first Landau level, with the
selection dictated by the strain orientation and signature of
the amplification imbalance. We also describe how the
anomalous behavior of the zeroth Landau level can be
probed via the beam dynamics in a three-dimensional
photonic lattice.

Model of a strained active photonic honeycomb
lattice.—We specifically consider the photonic system
sketched in Fig. 1. Panel (a) shows a segment of a honey-
comb lattice, with vertices representing weakly coupled
optical fibers in a three-dimensional photonic lattice [8]
or a set of basis states for a suitable spectral range in a

two-dimensional photonic crystal [9,10]. The honeycomb
lattice consists of two sublattices, A sites andB sites, which
we equip with different amplification or absorption rates.
This is motivated by recent works on optical realizations
[11–15] of non-Hermitian PT -symmetric quantum me-
chanics [16]. In the present setting, P stands for the
inversion about the center of a hexagon, which maps A
sites to B sites and thus inverts the amplification imbal-
ance; T corresponds to complex conjugation and converts
amplification into absorption, which also inverts the imbal-
ance. Panel (b) sketches an inversion-symmetry-breaking
deformed arrangement which results in a constant

FIG. 1 (color online). (a) Segment of a honeycomb lattice,
with vertices representing states in a two-dimensional photonic
crystal or weakly coupled optical fibers in a three-dimensional
setting. (b) Sketch of a deformed arrangement which results in a
constant pseudomagnetic field. (c) We investigate the interplay
of this field with amplification and absorption that breaks the
sublattice symmetry. The two sublattices A and B have ampli-
fication rates �A and �B, respectively (negative values corre-
spond to absorption). The pseudomagnetic field resulting from
the strain is modeled via smooth coupling functions tl whose
definition (5) involves the bond vectors �l, l ¼ 1, 2, 3.
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pseudomagnetic field whose interplay with the symmetry-
breaking effects of amplification and absorption we are
interested in. Panel (c) illustrates the microscopic model-
ing of these effects. The sublattices carry amplification
rates �A ¼ ��þ � and �B ¼ ��� �, respectively, where
�� is the average rate and � quantifies the imbalance. The
rates �A and �B may be negative, in which case they
signify absorption. Strain results in a spatial variation of
the coupling terms tab between neighboring A and B sites,
which we parameterize as tab ¼ tlðraÞ, where ra is the
unstrained position of the A site and l ¼ 1, 2, 3 indicates
the orientation along the unstrained bond vectors �l

(j�lj ¼ � is the unstrained nearest-neighbor distance).
The typical magnitude of the coupling terms is denoted
as t0.

We focus on a spectral range where the unstrained
passive lattice displays a conical band structure [10].
Based on the descriptions of strained graphene [1,2,17–19]
and photonic honeycomb lattices or crystals [8–15], the
resulting Lorentz force and the effects of amplification and
absorption are then captured by a Dirac equation with
Hamiltonian [20]

H ¼ i�A vð�Px � iPyÞ
vð�Px þ iPyÞ i�B

 !
; (1)

v ¼ 3t0�=2, Px ¼ �i@x � Ax, Py ¼ �i@y � Ay, where

A ¼ �
1

3�t0
ð2t1 � t2 � t3Þiþ �

1ffiffiffi
3

p
�t0

ðt2 � t3Þj (2)

is the pseudomagnetic vector potential. This Hamiltonian
applies to a continuous spinor wave function
ð’AðrÞ; ’BðrÞÞT which is obtained by separating out rapid

fluctuations with wave vector K� ¼ �ð4�=3 ffiffiffi
3

p
�Þi,

� ¼ �1, where � distinguishes two independent valleys.
These valleys arise due to the P and T symmetries of the
unstrained passive system [10]. The eigenvalues " of H
determine the frequencies ! of quasibound states in the
two-dimensional setting [9,10] or the propagation constant
ckz along the third direction in the three-dimensional set-
ting [8,11]. Eigenvalues with a positive imaginary part
correspond to amplified states (in time or along the propa-
gation direction), while those with a negative imaginary
part correspond to decaying states.

For vanishing �A ¼ �B ¼ 0 and constant tab ¼ t0, the
system is periodic and the band structure displays
the familiar Dirac cones " ¼ �vjqj near each corner of
the Brillouin zone (the K and K0 points situated atKþ and
K�, respectively), where q ¼ k�K� is the wave vector
relative to the corner point [17]. Weak uniform strain, with
tab ¼ t1;2;3 only depending on the bond orientation, displa-
ces the cones from the corners by an amount A [18,19]. In
the presence of amplification and absorption with �A ¼
��B ¼ �, the full band structure of the uniformly strained
system can still be real since in this case the non-Hermitian
Hamiltonian (1) displays the PT symmetry

H ðx; yÞ ¼ �xH �ð�x;�yÞ�x � PTHðx; yÞPT ; (3)

where �x is the Pauli matrix. However, when � exceeds a
threshold, eigenstates cease to be joint eigenstates of PT ,
which leads to complex branches of the band structure
[14,15]. If amplification and absorption are imbalanced,
all eigenvalues are shifted by i ��. This includes the case of
‘‘passive’’ PT symmetry, where �� ¼ �j�j such that one
sublattice is absorbing and the other sublattice is neutral
[12]. In these more general cases, a relaxed PT symmetry
can be stated as

H ¼ PTHPT þ 2i ��: (4)

The spectrum of such a system is constrained to eigenvalues
which either fulfill Im"n ¼ ��, or are paired with another
eigenvalue " �n ¼ "n � 2iIm"n þ 2i ��. However, strain
explicitly breaks the PT symmetry, as we explore in the
following.
Landau levels.—We consider a strain configuration

which results in a constant pseudomagnetic field of
strength�. This follows from a smoothly varying threefold
symmetric configuration with [1]

tl ¼ t0½1� ð�=2Þ�l � r�; l ¼ 1; 2; 3; (5)

which gives rise to a vector potential A ¼ ð��=2Þð�yiþ
xjÞ. Microscopically � depends on the sensitivity of the
coupling terms on the nearest-neighbor spacing, as well as
on the strain orientation; here we assume that this parame-
ter is given. Assuming unless otherwise stated that �> 0
we write the Hamiltonian as

H ¼ i�A v
ffiffiffiffiffiffiffi
2�

p
�y

v
ffiffiffiffiffiffiffi
2�

p
� i�B

 !
; (6)

� ¼ 1ffiffiffiffiffiffiffi
2�

p ð�i��x=2� i�@x þ �y=2þ @yÞ; (7)

where ½�;�y� ¼ 1 coincides with the algebra of har-
monic oscillator annihilation and creation operators. This
delivers a spectrum of Landau levels, with the zeroth level
given by

�0 ¼
�0

0

 !
; "0 ¼ i�A ¼ i ��þ i�; (8)

where �0¼ð�=2�Þ1=2 exp½��ðx2þy2Þ=4þ�ð�xþ iyÞ�
�2=�� represents the infinitely degenerate set of Landau

states fulfilling ��0 ¼ 0. With �m ¼ ðm!Þ�1=2ð�yÞm�0,
m ¼ 1; 2; 3; . . . , the other Landau levels are given by

�n ¼
�jnj

	n�jnj�1

 !
; "n ¼ i ��þ sgnðnÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
n � �2

q
; (9)
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	n ¼ sgnðnÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

�2
n

s
� i

�

�n

; �n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2v2�jnj

q
; (10)

for n ¼ �1;�2;�3; . . . This spectrum is shown in Fig. 2.
At vanishing �A;B (thus �� ¼ � ¼ 0), these solutions

reduce to the strain-induced Landau levels studied in the
graphene literature [1–4]. For uniform amplification or
absorption (� ¼ 0), the levels are shifted by i ��. For a finite
amplification imbalance (� � 0), the levels with index n
and �n ¼ �n (with n � 0) coalesce at a threshold value
j�j ¼ �n and then bifurcate into a pair of levels which
fulfill the spectral constraints stipulated below Eq. (4); in
particular, the average imaginary part of these eigenvalues
is given by i ��. The zeroth Landau level, however, has an
imaginary part which differs from ��, and is not accompa-
nied by a partner state (not even in the other valley). This
feature rules out the existence of any PT -like antiunitary
operator which would commute with the Hamiltonian.

The special nature of the zeroth Landau level can be
seen as a direct consequence of the parity anomaly [5–7],
which in the present context is most conveniently identified
by considering the supersymmetric interpretation of
Hamiltonians of the form (6) [5]. Depending on whether
one eliminates the B site or A site wave function, the
corresponding eigenvalue equation can be written as

ð"� i�AÞ’A ¼ ð"� i�BÞ�12�v2�y�’A; (11a)

ð"� i�BÞ’B ¼ ð"� i�AÞ�12�v2��y’B; (11b)

which provides a simple example of supersymmetric part-
ner potentials. Both equations deliver the same spectrum,

except for the zeroth Landau level, which only occurs in
the spectrum of Eq. (11a). This state thus breaks the sub-
lattice symmetry—its wave function is localized on the A
sublattice, and for �A � �B this asymmetry is reflected by
a departure from the overall symmetry of the spectrum
about i ��. This holds for �> 0, as we have assumed so far.
For �< 0, one needs to modify the definitions of � and
�y such that in the Hamiltonian (6) they are effectively
interchanged, and the zeroth Landau level is localized on
the B sublattice, with "0 ¼ i�B.
Focussing on a single valley (say around the K point,

� ¼ 1), this anomaly is fully analogous to the parity
anomaly in the problem of massive Dirac electrons in a
magnetic field, which possess an extra state located at
energy E ¼ mc2 or E ¼ �mc2 (depending on the sign of
the field) that breaks the symmetry of the spectrum about
E ¼ 0 [7]. For electrons on an ordinary honeycomb lattice
this anomaly is canceled in theK0 point [6,7], which can be
related to the K point by either using the P symmetry
(which interchanges the two sublattices) or the T symme-
try (which inverts the magnetic field). In the present pho-
tonic setting the T operation relating the two valleys in k
space inverts the sign of the amplification imbalance �;
furthermore, theP operation not only inverts � but also the
direction of the vector potential (2)—thus, both symme-
tries are indeed broken. Instead, the Hamiltonian (6) can be
mapped from one valley to the other by the reflection
symmetry x ! �x, � ! ��. Therefore, the parity anom-
aly for the zeroth Landau level is replicated identically in
both valleys.
We now turn to the other Landau levels. These are

constrained by the chiral symmetry H ðx;�yÞ� ¼
�H ðx; yÞ, which results in the pairing "�n ¼ �"�n of
eigenvalues before the bifurcation threshold, j�j<�n.
The question now arises: Why do these levels also obey
the spectral constraints that are usually associated to
PT -symmetric systems? In particular, before the bifurca-
tion Im"n ¼ Im"�n ¼ �� and the associated wave function
(9) has equal weight on the A and B sublattices, j	nj ¼
j	�nj ¼ 1. After the bifurcation, j	nj ¼ 1=j	�nj � 1, and
the level with the larger imaginary part has a larger weight
on the more amplifying sublattice, while the other state is
predominantly localized on the opposite sublattice. These
properties are all compatible with the existence of a gen-

eralized time-reversal symmetry gPT applying to these
states.
To identify this symmetry we introduce the basis

jm;Ai � �m

0

 !
; jm;Bi � 0

�m

 !
; m ¼ 0;1; 2; . . .

of ordinary Landau states localized on the A or B
sublattice (we suppress the degeneracy of these levels).
In this basis, the Hamiltonian (6) takes the form

H ¼ i�Aj0; Aih0; Aj þ fH , where

-2
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FIG. 2 (color online). Dependence of the Landau level
spectrum (8) and (9) on the amplification imbalance � ¼
ð�A � �BÞ=2, for strain leading to a pseudomagnetic field of
strength �. (a) Real part, which vanishes for the zeroth Landau
level, as well as for the other Landau levels beyond their
bifurcation thresholds �n, Eq. (10). (b) Imaginary part, which
becomes finite beyond the bifurcation. Because of the parity
anomaly, the zeroth Landau level breaks the symmetry of the
spectrum as it is located on the A sublattice for �> 0 (thick solid
line) while it is located on the B sublattice for �< 0 (thin dashed
line). The circles indicate the lasing threshold when j�j is
increased at fixed average absorption �� ¼ ��1. For � > 0 this
threshold is set by the zeroth Landau level, �L ¼ �1 (solid
circle), while for � < 0 it is set by the first Landau level, �L ¼
� ffiffiffi

2
p

�1 (open circle).
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fH ¼ X1
m¼0

�
i�Ajmþ1;Aihmþ1;Ajþ i�Bjm;Bihm;Bj

þv
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ðmþ1Þ

q
ðjmþ1;Aihm;Bjþjm;Bihmþ1;AjÞ

�
is the Hamiltonian in the subspace excluding the zeroth
Landau level j0; Ai. Inspecting the properties of

eP ¼ X1
m¼0

ðjmþ 1; Aihm;Bj þ jm;Bihmþ 1; AjÞ (12)

eT : �jm;Li ! ��jm;Li; L ¼ A; B; (13)

in the original Hilbert space, we find eT 2¼ 1, eP y¼ eP ,eP 2¼ 1� j0; Aih0; Aj. Thus gPT � eP eT jn�0 is an antiu-
nitary operator in the space of higher Landau levels.
Furthermore, an explicit calculation now delivers the

desired relation fH ¼ gPT fH gPT þ2i �� in the space
of these levels, which entails the spectral constraints.
This symmetry is of dynamical origin as its construction
makes explicit reference to the eigenstates of the
system. The symmetry does not extend to the zeroth

Landau level since eP is not unitary if this state is included.

While eP eT H ¼ H eP eT �2i �� eP eT, the relationeP eT H eP eT ¼ H � 2i ��� 2i�j0; Aih0; Aj again reveals
the special spectral status of this level.

Applications.—Our results for the complex spectrum of
Landau levels find their natural applications in the lasing in
a two-dimensional photonic crystal [21–24], and in the
beam propagation in a photonic lattice [8,11,20].

We first consider the onset of lasing, which occurs when
the system is realized in a two-dimensional photonic crys-
tal, with negligible leakage in the perpendicular direction.
The system becomes unstable towards lasing when the
complex frequency of one of the Landau levels acquires
a positive imaginary part. For fixed �� < 0, the system is
passive at � ¼ 0 (uniform absorption), but as j�j increases
the zeroth Landau level changes its imaginary part, and so
do the other Landau levels beyond their bifurcation thresh-
olds �n. The lasing threshold �L now depends on the sign
of �. If � > 0, the lasing threshold is given by �L ¼ j ��j
since the zeroth Landau level is then located
on the amplifying sublattice. For � < 0, the first level to
meet the real axis is associated with the pair n ¼ �1
involving the first Landau level, with lasing threshold

�L ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2v2�þ ��2

p
[see Eq. (9)]. In the case �� ¼ 0, the

lasing threshold either vanishes (for � > 0) or is finite (for
� < 0), depending on whether it is set by the zeroth or first
Landau level. These considerations apply to the principal
strain orientation studied here (�> 0). If the � is set to a
negative value, the role of the two sublattices is inter-
changed and the zeroth Landau level becomes lasing for
� < 0. Similar asymmetric threshold scenarios arise when

one approaches lasing by changing �� at fixed �, or when
one changes the amplification rate on one sublattice only.
In the lasing regime a macroscopic number of modes in the
zeroth or first Landau level will participate in the mode
competition. In a finite system, the exact degeneracy will
be lifted by the boundary conditions, but this lifting will be
small in the bulk, while edge states can also appear; dis-
order in the couplings and amplification rates will also
broaden the levels.
When the system is realized in an array of single-mode

waveguides the propagation along these waveguides is
free, and the eigenvalues represent complex propagation
constants, where the imaginary part describes the spatial
decay or increase of the eigenmodes [8,11,20]. An attrac-
tive feature of such settings is the possibility to probe the
parity anomaly in a system without any active (amplifying)
components. For this we set, e.g., �A < 0 and �B ¼ 0, such
that one sublattice is lossy while the other sublattice is
passive. The parity anomaly can then be probed via a beam
fed into one end of the waveguide array. The output beam
will show the component of the zeroth Landau level either
unaffected, or suppressed according to a decay constant
j�Aj. Assuming that j�Aj=2<�1, all other components are
suppressed uniformly according to a common decay con-
stant j�Aj=2. The initial population of the modes can be
controlled via the input beam. This approach mirrors pas-
sive implementations of PT -symmetric optics and avoids
complications from the intrinsic dispersion in the active
parts [12,13].
Conclusions.—In summary, we described the formation

of Landau levels in a strained photonic system and identi-
fied means to probe the associated parity anomaly via
amplification that breaks the sublattice symmetry. We
focused attention on the honeycomb lattice as it naturally
provides a conical dispersion, a pseudomagnetic field
under strain, and two sublattices which can be equipped
with gain and loss. It should be pointed out that conical
dispersions are a generic feature of triangular lattices with
inversion and time-reversal symmetry [10], while the
correspondence between strain and a pseudomagnetic field
generalizes to other lattices [25]. Guided by coupled-mode
theory [8,11,20] one can identify a number of lattices with
Dirac-like dispersions. Particularly promising variants
include the Lieb lattice (a tripartite lattice which in
addition exhibits a flat band) [26] and the one-dimensional
Su-Schrieffer-Heeger chain [27], a bipartite system
which provides the platform for the recently reported
PT -symmetric Talbot effect [28].
Note added in proof.—We end by pointing the reader to

two recent developments. Experimental work on a passive
photonic honeycomb lattice [29] has shown that the three-
fold symmetric strain pattern is indeed feasible and results
in the formation of the Landau levels described here.
Experimentalists have also succeeded in realizing
PT -symmetric lattices in 1þ 1 dimensions [30].
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M. Segev, and A. Szameit, arXiv:1207.3596.
[30] A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov,

D. N. Christodoulides, and U. Peschel, Nature (London)
488, 167 (2012).

PRL 110, 013903 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

4 JANUARY 2013

013903-5

http://dx.doi.org/10.1038/nphys1420
http://dx.doi.org/10.1038/nphys1420
http://dx.doi.org/10.1016/j.physrep.2010.07.003
http://dx.doi.org/10.1126/science.1191700
http://dx.doi.org/10.1103/PhysRevB.85.035422
http://dx.doi.org/10.1103/PhysRevB.85.035422
http://dx.doi.org/10.1103/PhysRevD.29.2375
http://dx.doi.org/10.1103/PhysRevLett.53.2449
http://dx.doi.org/10.1103/PhysRevLett.61.2015
http://dx.doi.org/10.1103/PhysRevLett.98.103901
http://dx.doi.org/10.1103/PhysRevLett.98.103901
http://dx.doi.org/10.1103/PhysRevA.78.033834
http://dx.doi.org/10.1103/PhysRevA.78.033834
http://dx.doi.org/10.1103/PhysRevLett.100.103904
http://dx.doi.org/10.1103/PhysRevLett.103.093902
http://dx.doi.org/10.1038/nphys1515
http://dx.doi.org/10.1038/nphys1515
http://dx.doi.org/10.1103/PhysRevA.84.021806
http://dx.doi.org/10.1103/PhysRevA.85.013818
http://dx.doi.org/10.1103/PhysRevLett.80.5243
http://dx.doi.org/10.1103/PhysRevLett.80.5243
http://dx.doi.org/10.1103/PhysRev.71.622
http://dx.doi.org/10.1143/PTP.113.463
http://dx.doi.org/10.1143/PTP.113.463
http://dx.doi.org/10.1143/PTPS.176.253
http://dx.doi.org/10.1143/PTPS.176.253
http://link.aps.org/supplemental/10.1103/PhysRevLett.110.013903
http://link.aps.org/supplemental/10.1103/PhysRevLett.110.013903
http://dx.doi.org/10.1103/PhysRevLett.104.233601
http://dx.doi.org/10.1103/PhysRevA.84.063833
http://dx.doi.org/10.1103/PhysRevA.84.063833
http://dx.doi.org/10.1103/PhysRevA.82.031801
http://dx.doi.org/10.1103/PhysRevLett.106.093902
http://dx.doi.org/10.1103/PhysRevLett.106.093902
http://dx.doi.org/10.1364/OL.37.000764
http://dx.doi.org/10.1364/OL.37.000764
http://dx.doi.org/10.1103/PhysRevA.86.031805
http://dx.doi.org/10.1103/PhysRevLett.42.1698
http://dx.doi.org/10.1103/PhysRevLett.42.1698
http://dx.doi.org/10.1103/PhysRevLett.109.033902
http://arXiv.org/abs/1207.3596
http://dx.doi.org/10.1038/nature11298
http://dx.doi.org/10.1038/nature11298

