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The excitation of near-infrared ð2þ 1ÞD solitons in liquid carbon disulfide is demonstrated due to the

simultaneous contribution of the third- and fifth-order susceptibilities. Solitons propagating free from

diffraction for more than 10 Rayleigh lengths although damped, were observed to support the proposed

soliton behavior. Numerical calculations using a nonlinear Schrödinger-type equation were also

performed.
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Spatial optical solitons are self-guided beams of light
that propagate with invariant shape in nonlinear (NL)
media thanks to a balance between diffraction and self-
focusing [1–7]. The observation of (1þ 1)-dimensional
[ð1þ 1ÞD] spatial solitons was reported in Refs. [8,9].
However, ð2þ 1ÞD optical solitons do not propagate in
media with instantaneous cubic nonlinearity (Kerr media)
described by the cubic NL Schrödinger (NLS) equation,
because catastrophic beam collapse occurs at high powers
[10–12]. The stabilization of ð2þ 1ÞD solitons can be
achieved due to the saturation of the nonlinearity [13],
that can be modeled by means of high-order susceptibili-
ties [14], but intervenes in an effective way in other situ-
ations, as a multiple wave interaction, as in the case
of quadratic nonlinearities [15], which even allowed pre-
diction [16] and observation of ð3þ 1ÞD spatiotemporal
solitons [17].

In quasidiscrete systems such as waveguides arrays,
collapse does not occur and ð2þ 1ÞD spatial solitons can
be produced [18]; light bullets were predicted [19] and
observed [20]. Nonlocality of the nonlinearity is another
stabilization process [21]; in air, the noninstantaneous
nonlinearity and saturation due to ionization allowed light
bullets observation [22]. Also, the photorefractive effect is
strongly nonlocal and ð2þ 1ÞD solitons have been
observed [23,24]. Thermal effects are also nonlocal and
may yield an effective nonlinearity able to stabilize the
beam against collapse [25,26]. Spatial solitons were also
observed in liquid crystals [27], or can be supported by
self-induced transparency [28,29]. Gain-loss balance may
also play a role in the formation of ‘‘dissipative solitons’’
[30,31]. More complex patterns, such as optical vortices
[32] and their stabilization using a modulation of the linear
refractive index [33], were considered. It should also be
noted that pure dissipative phenomena (without gain) may
lead to beam stabilization against collapse [34,35]; how-
ever, although dissipation is unavoidable in real systems, a

true steady state cannot be achieved in the absence of gain
unless dissipation is negligible. An exception is that of
conical or X-shaped waves [36,37].
As motivation for the present work we recall that the

case of electronic nonlinearities in passive transparent
media is of major importance for photonic applications.
Only media with ultrafast response may succeed for such
applications. Thermal effects are not suited for implemen-
tation in practical devices, especially integrated and min-
iaturized ones involving micrometer or submicrometer
sized optics. Moreover the topic is of importance due to
many theoretical developments based on the cubic-quintic
balance of nonlinearities.
In the frame of the NLS equation with cubic-quintic

nonlinearity, in the absence of both gain and dissipation,
stability conditions for ð2þ 1ÞD solitons were derived in
Ref. [14]. The possibility for detection of stable ð2þ 1ÞD
solitons in a homogeneous medium was proposed for an
organic crystal, but a clear observation was not reported
[38,39]. Here we demonstrate the excitation of ð2þ 1ÞD
solitons in liquid CS2 [40] that becomes possible due to the

simultaneous contribution of �ð3Þ and �ð5Þ, the third- and
fifth-order susceptibility, respectively. Stable self-trapped-
damped beams propagating for more than 10 Rayleigh
lengths free from diffraction were obtained and characterized.

The third-order refractive index, n2 / Re½�ð3Þ�, of CS2
was reported in Ref. [41] while the fifth-order nonlinearity
was studied in Refs. [42,43] that provided a value for the
fifth-order refractive index, n4. According to Refs. [41,43],
n2 and n4 have opposite signs; the three-photon absorption

coefficient, �4 / Im�ð5Þ, was measured in the present
work.
The relation between NL indices and susceptibilities is

found by expanding the relation n ¼ f1þ Re½�ð1Þ þ
3�ð3ÞjEj2 þ 10�ð5ÞjEj4�g1=2 in a power series of E, to

obtain n2 ¼ 3Re½�ð3Þ�=ð4n20"0cÞ and n4 ¼ 1
ð2n0"0cÞ2 �
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ð5Re½�ð5Þ�
n0

� 9fRe½�ð3Þ�g2
8n3

0

Þ. On the other hand, calculations for

the anharmonic oscillator with eigenfrequency !0 show

that �ð5Þð!;!;!;!;�!;�!Þ presents a resonance at
3! ¼ !0 in addition to the fundamental resonance at

! ¼ !0, while �
ð3Þð!;!;!;�!Þ only presents the latter.

The excitation beam at 920 nm was obtained from an
optical parametric amplifier pumped by a Ti:sapphire laser
(100 fs, 1 kHz). After passing through a �=2 plate and a
polarizer the optical parametric amplifier beam passes
through a spatial filter, being focused by a lens having
10 cm focal length. The Rayleigh length was 0.1 cm and
the beam waist at the focal plane was 16� 2 �m.

Figure 1(a) shows the absorbance spectra of CS2 diluted
in ethanol. The band centered in �0 � 317 nm, identified
in Ref. [44], can be excited by the simultaneous absorption
of three photons with wavelength at � ¼ 920 nm. Note that
this absorption band is centered at � �=3 and thus it is

expected that �ð5Þð!;!;!;!;�!;�!Þ would assume an
important role in this case. The value of n2 ¼ 3:1�
10�19 m2=W [41] yields Re½�ð3Þ� ¼ 2:8� 10�21 m2V�2.
The value of n4 ¼ �5:2� 10�35 m4=W2 was adjusted so
that the intensity threshold for filamentation obtained nu-
merically coincides with the one observed experimentally.
This value of n4 is 2.6 times higher than in Ref. [43], which

was obtained at 800 nm, not so close to the third harmonic
resonance with the CS2 band at 317 nm. It yields,

neglecting the term including �ð3Þ in the expression for

n4, Re½�ð5Þ� ¼ �1:2� 10�39 m4 V�4, which is 2 orders of

magnitude larger than fRe½�ð3Þ�g2.
Because of the Kramers-Kronig relations [45–47], such

large Re½�ð5Þ� corresponds to a large Im½�ð5Þ�, and conse-
quently �4 is not negligible. Therefore the sample trans-
mittance was measured versus the laser intensity to
determine �4 using a 0.1 cm long cell. Figure 1(b) shows
the output intensity, Iout, versus the input intensity, Iin.
Since the linear absorption and the two-photon absorption
coefficients are negligible, we analyzed the results consid-
ering the intensity inside the sample described by
dIðzÞ=dz ¼ ��4I

3ðzÞ. This equation leads to Iout¼Iðz¼
LÞ as a function of Iin, where L ¼ 0:1 cm is the cell length,
and the best fitting provided �4 ¼ 5:8� 10�29 m3=W2,
taking into account the Fresnel reflection of the cell’s faces.
The soliton experiments were carried out using quartz

cells either of 1.0 cm or 2.0 cm located in two positions. In
one case the entrance face of the cell was located in the
focal point (position A) to guarantee that the input beam
can be described as a plane wave. In the other position the
entrance face of the cell was 1.4 mm beyond the focus
(position B). After the cell a telescope with magnification
of 2.9 was used to exploit a large area of the CCD camera
used. The camera was in a translation stage with two lenses
and a filter in front of it to obtain images at different
positions along the beam pathway. The spectra were mea-
sured using a spectrometer with resolution of 1.0 nm.
Figure 2 presents beam profile images for different inten-

sities with the cell entrance face either at position A or
positionB. The conditions to observe ð2þ 1ÞD solitonpropa-
gation were identified and stable propagation was obtained
from Iin � 2:5� 1011 W=cm2 to 3:7� 1011 W=cm2.
From Fig. 2 and from the results for the 2.0-cm-long cell,

we conclude that the balance between NL refraction and
diffraction results in the generation of ð2þ 1ÞD spatial
solitons, which in addition suffer damping due to three-
photon absorption. The differences between the results
with the 1.0-cm- and 2.0-cm-long cells are mainly due to
the CS2 chromatic dispersion.
The output beam spectrum was measured for different

input intensities. The line width, �! � 62 nm, measured
at 0:4� 1011 W=cm2, increased linearly to � 105 nm at
� 1:1� 1011 W=cm2. From � 1:1� 1011 W=cm2 to �
4:5� 1011 W=cm2 the value of �! changes by less than
10%; this is an indication that intensity clamping is occur-
ring. The weak halo around the main beam observed in
Figs. 2(e) and 2(j) helps redistribution of the pulse energy.
Above 4:5� 1011 W=cm2 further linear growth of �! up
to � 145 nm was observed when Iin was increased to
7:5� 1011 W=cm2.
Figure 3(a) presents the output beam waist versus Iin

for different cases: when the 1.0 cm cell is at position A

FIG. 1 (color online). (a) Absorbance spectra: solid line des-
ignates pure ethanol; dashed (doted) line corresponds to 50 �l
(5 �l) of CS2 in 2 ml of ethanol. Cell length: 1.0 cm.
(b) Transmittance of CS2 versus laser intensity. Cell length:
0.1 cm. The arrows show the wavelengths corresponding to
one-, two-, and three-photon absorption.
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and B and when a 2.0 cm cell is used in position A.
Notice that when the 1.0 cm cell is positioned at A, for
Iin � 2:3� 1011 W=cm2 the beam waist becomes
� 30 �m remaining stable even for higher intensities.
Similarly, the output beam waist when the 1.0 cm cell
is at position B, with input beam waist of wi � 28 �m,
exhibits a minimum of about � 30 �m at 1:6�
1011 W=cm2 remaining stable for higher intensities. For
the 2.0 cm cell, the beam enlarges due to soliton damping,
but much less than it would through linear diffraction. At

the highest input intensities, the widening becomes more
important, since larger nonlinear absorption has reduced
the power available at this stage of the propagation. The
breathing behavior on the beam waist at high intensities is
well reproduced by the theoretical model when the cubic
and quintic nonlinearities are taken into account as shown
in Fig. 3(b).
In contrast with the stability of the output beam from

2:6� 1011 W=cm2 to 3:7� 1011 W=cm2, the beam profile
is distorted above 3:9� 1011 W=cm2 due to a higher NL
phase shift that leads to filamentation.
The opposite signs of n2 and n4 provide appropriate con-

ditions for soliton formation in the conservative approxima-
tion. The evolution of the optical field E is described by

2ik @E
@z þ �E ¼ � !2

c2
½3�ð3ÞEjEj2 þ 10�ð5ÞEjEj4�, where �

is the transverse Laplacian operator and k the light wave
number; frequency dispersion is neglected. This is the NLS
equation with cubic-quintic nonlinearities. After normaliza-

tion the equation assumes the form i @u@Z þ 1
2 ð@

2u
@X2 þ @2u

@Y2Þ þ
ujuj2 � ð�� i�Þujuj4 ¼ 0. The notation is the standard
one used for the complex Ginzburg-Landau equation;

FIG. 3 (color online). (a) Experimental beam waist at the exit
face of the cell as a function of the input intensity, for 1.0 cm and
2.0 cm cells positioned at A and B. (b) Dashed line: theoretical
model considering the cubic and quintic nonlinearities. Solid
line: the equilibrium beam waist, as defined in Eq. (4), versus
intensity according to the conservative model of Ref. [14].

FIG. 2 (color online). Beam images for different laser inten-
sities (cell length: 1.0 cm). (a–e) Data obtained when the
entrance face of the cell is at the focal point. (a) Beam profile
at the entrance face of the cell; (b) profile at the output face of
the empty cell; (c–e) profiles after propagation in CS2 for input
intensities of (c) 0:7� 1011 W=cm2, (d) 2:5� 1011 W=cm2,
(e) 3:8� 1011 W=cm2. (f–j) Data obtained when the entrance
face was 1.4 mm beyond the focus. (f) Beam profile at the
entrance face of the cell; (g) profile at the output face of the
empty cell; (h–i) beam profiles after propagation in CS2 for input
intensities of (h) 0:5� 1011 W=cm2, (i) 1:8� 1011 W=cm2,
( j) 2:1� 1011 W=cm2.
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however, dispersion, spectral filtering, linear gain-loss and
cubic NL gain-loss coefficients are zero here. X ¼ x=w0,
Y ¼ y=w0, and Z ¼ z=l, where w0 is the initial beam waist
and l ¼ n0!w2

0=c. The normalized field is u ¼ E=
ffiffiffiffi

Ir
p

,

where the reference intensity is Ir ¼ 2c2=3!2w2
0�

ð3Þ. The
NL coefficients are �� i� ¼ � 20

9
c2

!2w2
0

�ð5Þ

½�ð3Þ�2 . In the

absence of a gain term, the properties of the NLS equation
essentially differ from that of the complex Ginzburg-
Landau equation. The numerical data yield � ¼ 0:0023
and � ¼ 0:028; the propagation distance of 1.0 cm corre-
sponds to Z ¼ 3:57.

In the conservative case, i.e., neglecting �4, that corre-
sponds to set � ¼ 0, it was theoretically proved that stable
solitons exist [14]. Moreover, Ref. [14] gives conditions
under which a Gaussian input will stabilize to a soliton and
express the equilibrium waist as a function of A, the initial

amplitude of u, as we ¼ 2=A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 8�A2=9
p

in the normal-
ized units defined above.

Figure 3(b) presents a plot of we versus Iin for propaga-
tion distance of 1.0 cm. Although there is some discrep-
ancy with the experimental data due to the fact that
absorption was neglected, a qualitative agreement between

we and the measurements is obtained indicating that the
phenomenon described in Ref. [14] is observed in the
experiment.
The NLS equation was solved by a standard fourth-order

Runge-Kutta scheme in Z, in the Fourier domain. The NL
terms were computed using an inverse and a direct two-
dimensional fast-Fourier transform at each substep of the
scheme.
Figure 4 shows the evolution of the beam’s intensity

and profile for two values of Iin. Notice that for Iin ¼
1:6� 1011 W=cm2, first the beam self-focuses, and then
its collapse is arrested by the joint effect of NL absorption
and high-order Kerr effect. The beam amplitude decreases
after propagation for Z � 0:5 cm, leading to a regime in
which the width of the beam is approximately constant for
a long distance.
In summary, due to the simultaneous contributions of

�ð3Þð!;!;!;�!Þ and �ð5Þð!;!;!;!;�!;�!Þ, we
demonstrated that CS2 may propagate ð2þ 1ÞD stable
solitons when lasers with proper intensities and wave-
lengths are employed. A qualitative agreement is found
between the theoretical and the experimental results. The
small quantitative discrepancy is attributed to the chro-
matic dispersion that was neglected in the NLS equation,
the uncertainties in the intensity measurements, depen-
dence of the CS2 parameters with the pulse duration [48],
and deviation of the beam profile from a Gaussian function.
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