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We propose a scheme to control cavity quantum electrodynamics in the single photon limit by delayed

feedback. In our approach a single emitter-cavity system, operating in the weak coupling limit, can be

driven into the strong coupling-type regime by an external mirror: The external loop produces Rabi

oscillations directly connected to the electron-photon coupling strength. As an expansion of typical cavity

quantum electrodynamics, we treat the quantum correlation of external and internal light modes

dynamically and demonstrate a possible way to implement a fully quantum mechanical time-delayed

feedback. Our theoretical approach proposes a way to experimentally feedback control quantum

correlations in the single photon limit.
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Introduction.—Single emitters, such as atoms, mole-
cules, or solid-state emitters embedded in photonic nano-
cavities exhibit a variety of interesting features, arising
from the nonlinear and strongly correlated interactions
between photons and electrons. Typical examples include
Mollow triplets [1,2], single photon emission [3–5], vac-
uum Rabi oscillations [6–8], and lasing [9–11]. To exploit
quantum optical features for quantum information science,
the stabilization of nonclassical photon states against deco-
herence processes is of great importance. Proposed control
and protection schemes include protocols for quantum
error correction [12], quantum gate purifying [13], or
quantum feedback [14].

Particularly promising for nonlinear systems is quantum
feedback based on the repeated action of a sensor-controller-
actuator loop. Hereby, the quantum system is driven to a
target statevia the extrinsic control [14,15], andvacuumRabi
oscillations have been stabilized, recently [16]. In addition to
these extrinsic control setups, experiments start to explore the
variety of intrinsic, delayed feedback control, e.g., by using
an external mirror in front of a nanocavity [17]. In such
cavities, supporting one high-Q mode, the transition
between the quantum to the classical limit can be studied.
Classically, this type of feedback is used to stabilize the
operation point of semiconductor lasers with mW output
power and can be theoretically described with the Lang-
Kobayashi model [18–20] for classical fields. However, re-
stricted to coherent fields, thismodel breaks down in the limit
of few photons and emitters, i.e., in the quantum limit.
Therefore, a fully quantized model of delayed feedback is
useful for the full understanding of the experimental findings
and to pave the way for the experimental studies of delayed
feedback control of few photon states.

In this Letter, we report on a theoretical description of an
optical delayed feedback setup in the quantum limit of few

photons. Hereby, we predict the stabilization of vacuum
Rabi oscillations via intrinsic quantum control in contrast
to the already experimentally demonstrated extrinsic con-
trol techniques [14,16]. To achieve self-feedback, our
model includes the quantum mechanical coupling of the
cavity-QED system to external modes provided by an
external mirror. Since we treat this quantum limit, where
fluctuations dominate the dynamics, a nonperturbative the-
ory in the electron-photon and photon-photon coupling is
developed. We illustrate the approach for the single-photon
case and show that the mirror provides a structured external
mode continuum, enforcing strong coupling features due to
delayed feedback. Our results demonstrate that this feed-
back can overcome the optical cavity loss and that the
internal electron-photon coupling strength can be extracted
even if the system remains in the weak coupling regime.
This intrinsic quantum mechanical control setup includes
quantum mechanical as well as classical effects: For
instance, the Lang-Kobayashi case constitutes the classical
limit of our approach, if classical initial conditions are
chosen and the feedback contributions are restricted to a
single-round trip [18].
Model.—The system consists of a microcavity system

with a two-level emitter coupled to a single cavity mode.
The cavity exhibits a photon loss due to its coupling to an
external mode continuum shaped eventually by an external
mirror, Fig. 1. The external mirror, placed in a distance of
L [21], introduces a boundary condition to the external
mode structure and causes a feedback of lost cavity pho-
tons into the cavity. This quantum self-feedback depends
on the distance L and the speed of light c0 outside the
cavity, corresponding to the delay time: � ¼ 2L=c0
[18,22]. To maximize the efficiency of this feedback
mechanism, a lens is placed in front of the cavity, which
focuses the transmitted photons onto the mirror and back to
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the cavity [23]. This model can be experimentally realized
for many different two-level-like emitters, such as atoms,
molecules, or semiconductor nanostructures. Our theoreti-
cal model is based on the following Hamiltonian in second
quantization within the rotating-wave and dipole approxi-
mation [24]:

H¼ @!ca
y
c acþ @!va

y
vav� @Mðayvaccy þayc avcÞ

þ @!0c
yc� @

X

q

ðGqc
ydqþG�

qd
y
qcþ!qd

y
qdqÞ: (1)

The electronic two-level system is described via the fer-

mionic annihilation (creation) operator aðyÞv=c of the ground

(single valence) v and excited (conduction band) state c
with energies!c and!v, respectively. In the following, the
band gap energy !c �!v ¼ !cv is assumed to be in
resonance with the single cavity mode !0. A photon anni-
hilation (creation) in the cavity is described with the

bosonic operator cðyÞ and M is the coupling between the
two-level system and the cavity mode. We assume a cou-
pling strength in order of magnitude of M ¼ 50 �eV
[9,25]. The cavity photons interact with the external modes

dðyÞq in front of the mirror via the tunnel Hamiltonian
coupling element Gq. In the case of the mirror, Gq ¼
G sinðqLÞ [24,26], and G is chosen in the order of a cavity
loss of � ¼ �G2=c0 ¼ 300 �eV. The coupling element of
the tunnel Hamiltonian is derived via the boundary condi-
tion of a half-cavity in free space and the energy dispersion
of the continuum modes is chosen as the free dispersion
of light: !q ¼ c0q. Note, this widely used tunnel

Hamiltonian is an alternative description in comparison
to the composite-mode description of two coupled cavities,
treating rigorously both cavities as a continuum [27].

The dynamics of the observables of interest is calculated
within the framework of the equation of motion approach
[28–30], using Heisenberg’s equation of motion:

�i@@tÔ ¼ ½H; Ô� for an observable Ô. Given the one-

electron assumption: ayvav þ ayc ac ¼ 1, the set of equa-
tions of motions reads in the rotating frame:

@thEi ¼ iMhTyci � iMhTcyi; (2)

@thTdyq i ¼ iMhdyqci � i �GqhTcyi; (3)

@thTcyi ¼ �iMhEi þ iMhcyci � i
X

q

�G�
qhTdyq i; (4)

@thcydqi ¼ i �G�
qhcyci � iMhTydqi � i

X

q0
�G�
q0hdyq0dqi; (5)

@thdyq0dqi ¼ þi �G�
qhdyq0ci � i �Gq0hcydqi; (6)

with T :¼ ayvac, E :¼ ayc ac, and within the corresponding
rotating frame �Gq :¼ Gq exp½ið!0 �!qÞt�. The number of

excitations in the system N, described with the
Hamiltonian in Eq. (2), is the sum of the excitation inside

the cavity Nc ¼ hEi þ hcyci and outside the cavity Nex ¼P
qhdyqdqi and is conserved: N ¼ Nc þ Nex, therefore:

@thcyci ¼ �@tðhEi þ NexÞ.
To reveal single photon events, we choose in the follow-

ing N ¼ 1 as the true quantum limit, where factorizations
of the correlations in Eqs. (2)–(6) are not applicable: For
only few quantum excitations, fluctuations dominate the
combined electron and photon dynamics. In this limit,
fundamental quantum processes become experimentally
accessible and cQED experiments are conducted success-
fully in recent years [31,32].
For N ¼ 1, higher-order photon-assisted excited state

density, e.g., hEcyci or hEcydqi, are zero for all times and

do not need to be included [33]. The set of Eqs. (2)–(6) is
closed and can be solved exactly. To make the discussion
explicit, we use parameters of a self-organized InAs quan-
tum dot microcavity systems, widely used in experiments
[2,10,17,25,34,35]. Note, our approach is not limited to a
quantum dot as a two-level emitter. In contrast, it applies to
other system such as atomic or molecular systems, also.
Single photon feedback.—We start our discussion of

quantum feedback with Fig. 2, including three limiting
cases of the electron-photon dynamics (a)–(c) and our
main result in case (d).
Preliminary, the Jaynes-Cummings model is represented

by case (a) without outcoupling (Gq ¼ 0) and case (b) the

weak coupling limit without an external mirror (Gq ¼
const). For case (c) and (d), the external mirror is intro-
duced via Gq ¼ G sinðqLÞ. Without a microcavity, case

(c), no Rabi oscillations are seen in the weak coupling
limit. In contrast, by studying the full system, including a
microcavity, strong coupling features become clearly vis-
ible even in the weak coupling limit; cf. Fig. 2(d).
Case (a): The upper panel in Fig. 2 shows the photon

dynamics in case of a vanishing outcoupling element
Gq ¼ 0 with an initially excited two-level system: For

this benchmark calculation, the model contains no cavity
loss, since outcoupling is suppressed. The system operates

FIG. 1 (color online). Interaction scheme of a strongly coupled
electron-photon dynamics in a microcavity with input-output
coupling to a photon continuum in front of a mirror.
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in the strong coupling regime, visible at the occurring Rabi
oscillations with amplitude 1, Fig. 2(a). The excitation is
transferred coherently between the photonic and electronic
system at a rate directly proportional to the coupling
element, i.e., with 2M. The solution is given analytically

by the Jaynes-Cummings model [24]: hcyciðtÞ ¼ Nc

2 ½1�
cosð2MtÞ�, and the number of excitations inside the cavity
Nc remains constant for all times at NcðtÞ � 1.

Case (b): Next, we consider an outcoupling mechanism
into the external modes without an external mirror, i.e.,
Gq ¼ const � G � 0. This limit represents the case (b) of

an exponential rate for the cavity loss, where excitation
is lost to an unstructured continuum: This is the case, if
the outcoupling element G does not strongly depend
on the wave number q. In the weak coupling regime,
i.e., for G � M and an initially fully excited two-level
system, the solution reads hcyciðtÞ � sin2ðMtÞ expð��tÞ;
cf. Fig. 2(b). It can be recognized that due to the sponta-
neous emission a photon density is built up at the begin-
ning of the dynamics. Since the cavity loss is large in
comparison to the electron-photon coupling, a reversible
exchange of excitation between the cavity photon and the
electron of the two-level system is inhibited. We observe a
decay of the photon density after its initial excitation by
the electronic relaxation. In this case, the strength of the
coupling element M is clearly not accessible.

After these two benchmarks without a structured exter-
nal continuum, we now focus on the mirror induced
delayed feedback case.

Case (c): Now, sinceGq ¼ G sinðqLÞ, the external mode

continuum is structured due to the presence of the external
mirror at a distance L in front of the two-level system,
which introduces a self-feedback at time � ¼ 2L=c0. The
dynamics in Fig. 2(c) describes a typical situation, for
demonstration, the delay time � is set to 75 ps [36]. For
t < �, the structured character of the external modes has
yet not resolved in time and the situation does not differ
from the unstructured case in (b): The excitation decays.
For t > �, the structured character of the continuum is
resolved and a pronounced feedback is visible at multiples
of �. Note, in case (c), an approximate analytical solution
can be given for an excited state dynamics of hEið0Þ ¼ 1 in
the time interval ½m�; ðmþ 1Þ�� [23]:
hEiðtÞ ¼ ðm!2mÞ�1½�ðt� �mÞ�2m exp½��ðt�m�Þ�; (7)

with the decay rate � given above. Besides the initial
amplitude of 1 for m ¼ 0 and t ¼ 0, minimum-maximum
analysis of Eq. (7) shows the maximum amplitude is
reached at tmax ¼ �þ 2=� with a value of hEiðtmaxÞ ¼
expð�2Þ; cf. Fig. 2(c). This value represents an upper limit
for delayed feedback effects. Concluding the discussion of
case (c), it is important to note that a two-level system in
front of a mirror without additional losses does not show
any Rabi oscillations. This system corresponds to a bigger
cavity, where the lens collects all the emission of the two-
level system as well as of the mirror and a continuous
energy exchange between the two-level system and the
mirror is established [23,37].
Case (d): Next, we study the full system, consisting of a

microcavity with a two-level system and an external mir-
ror. We still focus on the case of a weak electron-photon
dynamics inside the cavity (M � G) with an initially
excited two-level system and for M ¼ 55 �eV, G ¼
100 meV and Gq ¼ G sinðqLÞ. At the beginning of the

dynamics, spontaneous emission leads to a decay of the
electronic excitation and to a raise of the photon density
under cavity excitation loss to the structured external con-
tinuum. Therefore, Rabi oscillations do not occur. In con-
trast, the total amount of excitation is completely
transferred in the first 50 ps to the external continuum.
After 75 ps, the delayed feedback drives the cavity system
again. In strong contrast to cases (b),(c), irregular Rabi
oscillations with an approximate frequency of 2M as in the
Jaynes-Cummings model occur. These Rabi oscillations
become highly regular at 225 ps. From this time on, the
oscillations occur clearly with the frequency 2M deter-
mined by the microscopic electron-photon coupling
strength. Surprisingly, this happens in the weak coupling
regime, M � G, when no Rabi oscillations are expected.
The observed oscillation frequency depends only on the
underlying electron-photon coupling strength and is not
affected by other outcoupling parameters. In comparison to
pure Rabi oscillations of the isolated cavity-emitter sys-
tem, the amplitude of the observed feedback oscillations is

0

0,5

1

0

0,1

0,2

0

0,1

0,2

0 100 200 300 400
0

0,1

0,2

FIG. 2 (color online). Dynamics in the single-excitation limit.
Case (a): Without outcoupling, Rabi oscillations occur. In the
weak coupling limit without external mirror (b) or with feedback
in a bigger cavity (c), no Rabi oscillations occur. But in
(d), although in the weak coupling limit, with an external mirror
and a microcavity, the delayed feedback effect leads to Rabi
oscillations again. Note, that in case (c) the occupation of the
upper level hEi is plotted, in cases (a),(b),(d) the photon density
is hcyci.
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decreased strongly. The amplitude is determined by the
outcoupling strength Gq and limited by the upper limit

discussed for case (c). Here, the amplitude is in the order of
around 5% of the initial excitation. To clarify our results in
Fig. 2(d), we now turn to the explanation why the delayed
feedback can restore the signatures of strong coupling even
in the weak coupling limit.

Feedback-induced oscillations.—The crucial quantity
for the explanation of the occurrence of Rabi oscillations
in the weak coupling limit is the total amount of excitation
inside the cavity: NcðtÞ ¼ hcyci þ hEi ¼ 1. For Nc ¼
constant in a dynamically evolving system of oscillators,
both oscillators (two-level system and cavity photon) ex-
change periodically this excitation in the course of time. In
Fig. 3, now for the external mirror case, we plot the
dynamics of the total amount of excitation in the cavity
Nc (black, dashed line). After dropping completely to zero
in the first � interval, e.g., Mt ¼ 1=2, and vanishing again
at Mt ¼ 2 (left figure), the cavity dynamics and the feed-
back mechanism establishes a nonvanishing excitation
amount inside the cavity; i.e., NcðtÞ> 0 and const for
Mt > 3; cf. Fig. 3(left). Obviously, the delayed feedback
causes a nearly stationary Nc, due to a constant backcou-
pling into the cavity. Similar to the case of the ideal Rabi
oscillations, for a nonvanishing electron-photon coupling
and total excitation Nc > 0 inside the cavity, a continuous
transfer of excitation between the electronic and photonic
system at approximately the rate M occurs. If the fluctua-
tion of the excitation amount Nc is negligible, the
oscillation frequency is exactly 2M as in the Jaynes-
Cummings model. Clearly, the delayed feedback results
in a situation comparable to the Jaynes-Cummings model,
where also the amount of excitation is fixed due to an ideal,
closed cavity. The analytical solution in Fig. 3(right) is

approximately hcyciðtÞ ¼ Nc

2 ½1� cosð2MtÞ� for Mt > 5.

Fortunately, the presence of the two-level system inside
the cavity supports the storage of the cavity excitation,
since the outcoupling mechanism acts only on the cavity
photons. As the excitation is transferred between the cavity
and the external modes, the electronic system stores a
necessary amount of excitation to induce the feedback-
induced Rabi oscillations. Furthermore, for an increasing
number of round trips, the feedback signal smears out and

spreads the excitation flow equally in time at the cost of the
initially higher amplitude; cf., in Fig. 3(left). In conse-
quence, feedback induced Rabi oscillations are a very
robust feature, since two mechanisms guarantee the con-
stant amount of cavity excitation, eventually.
To demonstrate the robustness of our result with respect

to different delay times, we calculate the photon density
dynamics for another delay time � without changing other
parameters. In Fig. 4, we present the dynamics of the photon
density (straight, red line) and total amount of excitation in
the cavity (black, dashed line) for � ¼ 11

5 M
�1. It can be

recognized that now with an increased round trip time the
total amount of energy Nc drops down to zero longer and
more often in comparison with the previous case M� ¼ 1;
cf. Fig. 4(left). For Mt > 20 (not shown), the amount of
energy inside the cavity becomes approximately constant
again and the approximate solution given above with a
slightly decreased amplitude is valid again. Regular Rabi
oscillations already take place during the transient switch-
on period and reveal the electron-photon coupling strength;
cf. Fig. 4(right) at, e.g., Mt > 11. The constant photonic
exchange rateGq and the presence of the electronic system

as an excitation storage on a time scale ofM�1 leads always
to a constant amount of cavity excitation, which leads to
regular Rabi oscillations with frequency 2M.
Conclusion.—We present a fully quantized model to

calculate the photon-photon delayed feedback in the
single-photon limit beyond typical perturbation
approaches. Our model incorporates fundamentally new
delay effects into the Jaynes-Cummings model and paves
the way to the description of delay-controlled cavity
coupled electron-photon dynamics. As a first example,
we showed delay-induced Rabi oscillations in the weak
coupling regime. We expect exciting new experiments
relying on delayed feedback setups in the quantum limit
of light, e.g., the photon-photon exchange between wave
guide coupled emitter-single-mode cavity systems, and
provide a theoretical tool to interpret and predict results
yet inaccessible for typical, classical feedback models.
We acknowledge support from Deutsche Forschungsge-

meinschaft through SFB 910 ‘‘Control of self-organizing
nonlinear systems’’ (project B1). The authors thank Ido
Kanter for insightful discussions.
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FIG. 3 (color online). Dynamics of the photon density (solid
line) and total amount of excitation energy Nc (dashed line) with
parameters of Fig. 2(d). The constant, nonvanishing amount of
excitation inside the cavity leads to regular Rabi oscillations,
revealing the electron-photon coupling M.
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[32] D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A.
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Savona, and A. Imamoğlu, Phys. Rev. Lett. 103, 207403
(2009).

[36] Here, a delay of � ¼ 75 ps is chosen and corresponds to a
length L in the range of cm. The same calculations can be
done for even m. They take longer, but the effect is not
changed.

[37] R. J. Cook and P.W. Milonni, Phys. Rev. A 35, 5081
(1987).

PRL 110, 013601 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

4 JANUARY 2013

013601-5

http://dx.doi.org/10.1103/PhysRevA.40.5516
http://dx.doi.org/10.1103/PhysRevLett.106.247402
http://dx.doi.org/10.1103/PhysRevLett.106.247402
http://dx.doi.org/10.1103/PhysRevLett.96.070504
http://dx.doi.org/10.1126/science.1143835
http://dx.doi.org/10.1126/science.1143835
http://dx.doi.org/10.1126/science.290.5500.2282
http://dx.doi.org/10.1126/science.290.5500.2282
http://dx.doi.org/10.1103/PhysRevLett.76.1800
http://dx.doi.org/10.1103/PhysRevLett.76.1800
http://dx.doi.org/10.1038/nphoton.2011.15
http://dx.doi.org/10.1038/nphoton.2011.15
http://dx.doi.org/10.1038/nature02969
http://dx.doi.org/10.1038/nature01974
http://dx.doi.org/10.1038/nphys1518
http://dx.doi.org/10.1364/OE.16.004848
http://dx.doi.org/10.1364/OE.16.004848
http://dx.doi.org/10.1103/PhysRevA.52.R2493
http://dx.doi.org/10.1103/PhysRevLett.79.5178
http://dx.doi.org/10.1103/PhysRevLett.79.5178
http://dx.doi.org/10.1103/PhysRevLett.108.243602
http://dx.doi.org/10.1038/nature11505
http://dx.doi.org/10.1038/nature11505
http://dx.doi.org/10.1038/ncomms1370
http://dx.doi.org/10.1109/JQE.1980.1070479
http://dx.doi.org/10.1109/JQE.1980.1070479
http://dx.doi.org/10.1103/PhysRevLett.107.234102
http://dx.doi.org/10.1103/PhysRevLett.107.234102
http://dx.doi.org/10.1103/PhysRevLett.65.1999
http://dx.doi.org/10.1103/PhysRevLett.65.1999
http://dx.doi.org/10.1002/pssb.200945434
http://dx.doi.org/10.1002/pssb.200945434
http://dx.doi.org/10.1103/PhysRevA.66.023816
http://dx.doi.org/10.1103/PhysRevLett.103.087405
http://dx.doi.org/10.1103/PhysRevLett.103.087405
http://dx.doi.org/10.1109/JQE.1986.1073104
http://dx.doi.org/10.1002/pssb.201000851
http://dx.doi.org/10.1103/PhysRevLett.109.054301
http://dx.doi.org/10.1103/PhysRevLett.109.054301
http://dx.doi.org/10.1038/nature05586
http://dx.doi.org/10.1103/PhysRevLett.98.117402
http://dx.doi.org/10.1103/PhysRevLett.98.117402
http://dx.doi.org/10.1103/PhysRevB.84.125324
http://dx.doi.org/10.1103/PhysRevB.84.125324
http://dx.doi.org/10.1103/PhysRevB.85.075318
http://dx.doi.org/10.1103/PhysRevB.85.075318
http://dx.doi.org/10.1103/PhysRevLett.103.207403
http://dx.doi.org/10.1103/PhysRevLett.103.207403
http://dx.doi.org/10.1103/PhysRevA.35.5081
http://dx.doi.org/10.1103/PhysRevA.35.5081

