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A new mechanism for the production of electron-positron pairs from the interaction of a laser field and a

fully ionized diatomic molecule in the tunneling regime is presented. When the laser field is turned off, the

Dirac operator has resonances in both the positive and the negative energy continua while bound states are

in the mass gap. When this system is immersed in a strong laser field, the resonances move in the complex

energy plane: the negative energy resonances are pushed to higher energies while the bound states are

Stark shifted [F. Fillion-Gourdeau et al., J. Phys. A 45, 215304 (2012)]. It is argued here that there is a pair

production enhancement at the crossing of resonances by looking at a simple one-dimensional model: the

nuclei are modeled simply by Dirac delta potential wells while the laser field is assumed to be static and of

finite spatial extent. The average rate for the number of electron-positron pairs produced is evaluated and

the results are compared to the one and zero nucleus cases. It is shown that positrons are produced by the

resonantly enhanced pair production mechanism, which is analogous to the resonantly enhanced

ionization of molecular physics. This phenomenon could be used to increase the number of pairs

produced at low field strength, allowing the study of the Dirac vacuum.

DOI: 10.1103/PhysRevLett.110.013002 PACS numbers: 31.30.J�, 12.20.Ds, 42.50.Hz

There has been a tremendous amount of effort in the last
few decades to increase laser intensities and it is now
conceivable to reach laser intensities above 1023 W=cm2

[1], such that the corresponding field strength is larger than
the Coulomb fields in matter. For slightly lower intensities,
this has led to the development of nonperturbative models
of ionization such as tunneling ionization in atomic physics
[2] and charge resonance enhanced ionization (CREI) in
molecular physics [3]. This new regime of superintense
laser intensities now available allows the study of new
physical effects where relativistic and quantum electro-
dynamics (QED) corrections start to be important [4].
Among the QED effects, one of the most important phe-
nomena is the long-sought Schwinger mechanism [5],
which consists of the decay of the vacuum of a static
electric field into electron-positron pairs. In the Dirac
interpretation, this can be seen as a tunneling of electrons
from the negative energy sea to the positive continuum.
This has never been observed experimentally because it
requires field strengths on the order of ES � 1018 V=m (as
compared to atomic Coulomb fields with E0 � 5�
1011 V=m), which are not available experimentally (this
corresponds to a laser intensity of 1029 W=cm2). However,
given the new experimental advances and the novel laser
technologies, there has been a renewed interest in this
process and new ideas have emerged which could allow
us to probe the QED vacuum. Therefore, many variations
of Schwinger’s original idea using different field configu-
rations have been proposed [6–15]. A semiclassical theory
of relativistic tunneling ionization has also been considered
[16], similar to atomic tunneling ionization.

In this Letter, a new mechanism is proposed to enhance
pair production from a laser field interacting with a fully
ionized diatomic molecule, which we denote the reso-
nantly enhanced pair production (REPP) process. This
mechanism is analogous to the CREI process, which is
well known to occur in molecular physics via a Stark
shifted molecular Coulomb potential [3]. It proceeds in
the following way and is depicted in Fig. 1. First, let us
consider the case when the electric field F is zero and look
at the spectrum of the Dirac operator for a system having
two nuclei. Also, for simplicity, we consider only two
bound states: the ground state and the first excited state.
If the nuclear charge is not too large (Z < 137), the bound
states are in the mass gap, in the energy range [�mc2,
mc2]. On the other hand, the negative and positive energy
continua incorporate the so-called Ramsauer-Townsend
resonances (RTRs) (these are shown as dark regions in
Fig. 1), related to the backscattering of waves on the
potential wells. This results in a peak-valley structure in
the spectral density function in both continua [17]. When
the electric field is turned on and the interatomic distance R
is varied, the positions of the resonances in the complex
energy plane change: the RTRs of the negative energy sea
are Stark shifted to higher energies while the RTRs of the
positive energy continuum are downshifted towards lower
energies [17]. The bound states become resonances (their
energies gain an imaginary part and thus become unstable
states) and are Stark shifted by ���FR=2. When a RTR
of the negative energy sea crosses a resonance from the
bound states or a RTR from the positive energy continuum,
the transition from the negative to the positive energy
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continuum is enhanced, yielding a higher pair production
rate (channel 1). The same mechanism occurs for the
excited state: when it crosses a RTR from the positive
energy sea, the ionization of the molecule is enhanced,
facilitating also the transition from the negative energy sea
to the resonance because it reduces the Pauli blocking (if
the electron is ionized, the excited state resonance is
‘‘free’’ and can receive a new electron that tunneled from
the negative energy state). This is channel 2. Therefore, if
the field or the interatomic distance R is not too large, the
pair production occurs by a two-step process: (i) electrons
from the negative energy sea tunnel to one of the bound
state resonances, (ii) followed by an ionization process
where the same electron tunnels to the positive energy
continuum. This produces a flux of electron and positrons,
propagating in opposite directions. There is another possi-
bility which occurs when the RTRs from the positive and
negative continua cross each other (channel 3). Then, it is
possible to have a direct transition from the negative to the
positive energy continua, which also enhances pair pro-
duction but which effect is usually more modest than other
channels because they have a lower density of states. These
effects are important at a large internuclear distance R. For
small R, such as in those achieved in heavy ion collisions
(HIC) [18], the wave functions of each nucleus overlap and
another mechanism is responsible for pair production: the
effective electric charge approaches 2Z in which case
the ground state has a lower energy level, approaching
the negative energy sea. In the electric field, it is then
easier for an electron to tunnel from the negative energy
sea and again this also leads to enhanced pair production.

To confirm these novel ideas, a calculation of the pair
production rate is performed in a very simple one-
dimensional (1-D) model: the nuclei are modeled by delta
function potential wells while the laser field is considered
in the adiabatic limit and is taken as a static electric field.

We have shown earlier that an adiabatic model which
includes nonadiabatic transitions near avoided crossings
is in excellent agreement with numerical results [19]. In a
previous three-dimensional (3-D) model of the one elec-
tron Hþ

2 molecule in superintense laser fields, it was shown
how to adapt free electron Volkov solutions of the Dirac
equation to the two center problem [20]. In the present
work, we use a simpler model which allows us to under-
stand the mechanisms and the physics behind the pair
production from the interaction of lasers with fully ionized
diatomic molecules. We show that REPP can be utilized to
enhance pair production at low field strength and large
internuclear distance. This conclusion is confirmed by
conducting a comparative study with the cases where there
are no nuclei (Schwinger’s process) and where there is only
one nucleus.
To calculate the average rate of pairs produced, we

follow the discussion presented in Refs. [21–23] and
assume that the electric field vanishes at x ¼ �1 and
thus, that it has a finite extent in space. In this case, it is
possible to define the ‘‘asymptotic states’’ at x ¼ �1: in
these regions, the particles are free and there is a natural
separation between the negative and positive energy solu-
tions. This allows us to evaluate the number of pairs
produced from a solution of the Dirac equation. It should
be noted here that the boundary conditions on the wave
function at x ¼ �1 are obtained from the time-dependent
case where the Lehmann-Symanzik-Zimmermann (LSZ)
asymptotic conditions, which imply the vanishing of the
field at t ¼ �1, can be used [24]. In the time-independent
case. however, the latter cannot be fulfilled directly: we
have to consider localized wave packets which are effec-
tively in the free region when t ¼ �1. From these con-
siderations, it is possible to evaluate the average number of
pairs hni and it has been argued in Refs. [21–23] that this
observable is given by

dhni
dtdE

¼ 1

2�
jAðEÞj2; dhni

dt
¼ 1

2�

Z
�Klein

dEjAðEÞj2;
(1)

where A is the coefficient of the positive energy solution
propagating towards x ¼ þ1, at the right of the potential
(see Fig. 2) and �Klein is the Klein region. This formula is
valid for a time-independent external field where solutions
are labeled by energy. Similar formulas have been derived
in Ref. [25,26].
The calculation of pair production reduces to a

transmission-reflection problem where the incident,
reflected, and transmitted waves are given respectively by

c inc:ðxÞ ¼ vðpÞeipðEÞx; (2)

c ref:ðxÞ ¼ Bvð�pÞe�ipðEÞx; (3)

c trans:ðxÞ ¼ AuðkÞeikðEÞx: (4)

FIG. 1 (color online). Description of the REPP mechanism.
The dark gray regions are the positions of resonances (high
density of states) while the light gray regions correspond to
accessible energies which have a lower density of states.
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Here, u, v are the positive and negative energy free

spinors, while kðEÞ ¼ 1
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 �m2c4

p
and pðEÞ ¼

1
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðE� 2FLÞ2 �m2c4
p

.

We are considering the 1-D Dirac equation, which is
given by

Ec ðxÞ ¼ ½�ic�z@z þ �xmc2 þ A0ðxÞ þ VðxÞ�c ðxÞ; (5)

where E is the eigenenergy, c is the light velocity, m is the
electron mass, and c ðxÞ is the two-component spinor wave
function. The electric potential is divided in three spatial
regions as (see Fig. 2)

A0ðxÞ ¼
8<
:
2FL for x 2 ð�1;�L�;
�Fðx� LÞ for x 2 ð�L; LÞ;
0 for x 2 ½L;1Þ;

(6)

where F is the field strength (we are working in a gauge
where the vector potential is Ax ¼ 0, the electric field is
related to the potential as Ex ¼ �@xA0ðxÞ), and 2L is the
length over which the electric field is constant. Outside the
interval [� L, L], the electric field vanishes.

For the other scalar potential, three cases are considered:
(1). Zero nucleus: VðxÞ ¼ 0 (2). One nucleus: VðxÞ ¼
�g�ðxÞ (3). Two nuclei: VðxÞ¼�g�ðx�RÞ�g�ðxþRÞ,
where g is the potential strength (physically, it is related
to the charge of the nucleus). It was shown in Ref. [17]
in detail that the Dirac delta potential wells can be
characterized by the following boundary conditions:
lim�!0c ð� þ �Þ ¼ lim�!0Gc ð� � �Þ (� is the potential
well position), which relates the wave function on the right
and the left of the potential well. The matrix components
are given by G12 ¼ G21 ¼ 0 and

G11 ¼ 1

1þ g2

4c2

�
1� g2

4c2
þ i

g

c

�
¼ G�

22: (7)

Thus, the wave function between the potential wells is a
solution of Eq. (5) without VðxÞ. Then, Eq. (7) is used to

match the wave function at x ¼ 0, �R, for cases 2 and 3,
respectively.
The Dirac equation can be solved analytically by decou-

pling the two spinor components and by letting yðxÞ ¼
e�ið�=4Þ

ffiffiffiffi
2c
F

q
ðE�Fðx�LÞ

c Þ. Then, the Dirac equation becomes a

system of equations with well-known solutions in terms of
parabolic cylinder functions Uð�; zÞ [27]:

c ðxÞ ¼ c1UaðxÞ þ c2UbðxÞ; (8)

where c1;2 are integration constants and where we defined

Ua;1ðxÞ � Uð�; yðxÞÞ (9)

Ub;1ðxÞ � Uð��;�iyðxÞÞ; (10)

Ua;2ðxÞ � mc

ffiffiffiffiffiffi
c

2F

r
eið3�=4ÞUð�þ 1; yðxÞÞ; (11)

Ub;2ðxÞ � 1

mc

ffiffiffiffiffiffi
2F

c

s
e�ið�=4ÞUð��� 1; yðxÞÞ: (12)

Here, we have � ¼ i m
2c3

2F � 1
2 , which is related to the

probability of producing one pair in a static field as PS �
ei�ð�þ1=2Þ [5].
Now, imposing the continuity of the wave function at the

region boundaries and using Eq. (7) to include the potential
wells, we obtain the following conditions:

vðpÞeipLþBvð�pÞe�ipL¼a1Uað�LÞþa2Ubð�LÞ;
a1Uað�RÞþa2Ubð�RÞ¼G�1½b1Uað�RÞþb2Ubð�RÞ�;
b1UaðRÞþb2UbðRÞ¼G�1½c1UaðRÞþc2UbðRÞ�;
c1UaðLÞþc2UbðLÞ¼AuðkÞeipL:
Similar conditions also exist for the zero and one nucleus
cases. These are systems of equations which can be used to
solve for the integration constants A, B, a1;2, b1;2, c1;2. The
numerical results are presented in the following.
The particle spectrum dhni=dEdt as a function of inter-

atomic distance is plotted in Fig. 3 for the two nuclei case
and for g ¼ 0:8 (the ground state energy of this potential
well corresponds to the energy of the 1s orbital of the U91þ

ion which has EU91þ
1s 	 13908 a:u. (1 a:u: 	 27 eV)). The

other parameters are chosen as L ¼ 100 (� 38:6 pm),
F ¼ 0:09 (� 1018 V=m), in units where @ ¼ c ¼ m ¼ 1
and e ¼ ffiffiffiffi

�
p

, where � ¼ e2=@c is the fine structure con-
stant. In this figure, there is a clear enhancement of pair
production at the positions of resonances. Moreover, as R
is varied, it is possible to see how the resonances are
moving in the energy plane: some of the RTRs in the
negative energy sea are shifted to higher energies while
the ground state and the first excited state are Stark shifted
down and up, respectively, as illustrated in the figure. More
interesting is the fact that when the RTR crosses with the

FIG. 2 (color online). Diatomic model to study REPP with�R
the positions of delta function potentials. The electric field is
nonzero in [� L, L]. In blue is the Klein region where it is
possible to have a transition from a negative to a positive energy
state.
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bound states, there is an enhancement in the pair spectrum
(channel 1 or 2) by approximately an order of magnitude.

In Fig. 4, the total rate dhni=dt for the two center diatomic
model as a function of the interatomic distance is presented
and compared to the zero and one nucleus nuclear potentials
for two electric field strengths: F ¼ 0:2 and F ¼ 0:09. This
figure shows clearly that the number of pairs is enhanced by
REPP at larger R: the position of peaks in the rate corre-
sponds to the interatomic distance where the ground state
resonance crosseswithRTRs (channel 1). This is also seen as
red peaks inFig. 3 (for example, atR 	 11:0 andE 	 8:7 for
the first peak of F ¼ 0:09). As F is lowered, the total rate is
suppressed exponentially as in Schwinger’s result and the
crossing (for channel 1) occurs at largerR (this is because the
Stark shift of the ground state resonance is �� FR=2).
However, the relative enhancement (in comparison to the
zero and one nucleus cases) increases and can reach approxi-
mately an order of magnitude (for F ¼ 0:09). This

phenomenon is related to the fact that the density of states
rises close to resonance energies as F is decreased (reso-
nances become more stable). Therefore, REPP is an impor-
tant process for pair production in laser-matter interaction.
The largest enhancement, however, occurs at small R

where it reaches 2 orders of magnitude above the one
nucleus case. This occurs because the effective potential
strength approaches 2g which brings the ground state
closer to the Dirac sea, facilitating the tunneling from the
negative to the positive energy states. This also suggests
that an experiment using HIC in a laser field could also be
used to probe the Dirac vacuum, as opposed to free field
experiments [18].
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