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Scaling of the Low-Energy Structure in Above-Threshold Ionization
in the Tunneling Regime: Theory and Experiment
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A calculation of the second-order (rescattering) term in the S-matrix expansion of above-threshold
ionization is presented for the case when the binding potential is the unscreened Coulomb potential.
Technical problems related to the divergence of the Coulomb scattering amplitude are avoided in the
theory by considering the depletion of the atomic ground state due to the applied laser field, which is well
defined and does not require the introduction of a screening constant. We focus on the low-energy
structure, which was observed in recent experiments with a midinfrared wavelength laser field. Both the
spectra and, in particular, the observed scaling versus the Keldysh parameter and the ponderomotive
energy are reproduced. The theory provides evidence that the origin of the structure lies in the long-range

Coulomb interaction.
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Above-threshold ionization (ATI) is an important pro-
cess in the interaction between atoms and an intense laser
field [1,2]. The photoelectron energy spectrum shows that
ATT occurs either in the form of multiphoton ionization or
tunneling ionization. These two regimes can simply be
distinguished by the value of the Keldysh parameter

Yy = 1/1,,/2U]7 [3], where I, is the ionization potential
of the atom and U, the ponderomotive energy of the
laser field. In the multiphoton regime where y > 1, the
photoelectron spectrum consists of individual ATI peaks
spaced by the energy of one photon with monotonically
decreasing amplitude [1,4,5]. In the tunneling or over-
the-barrier ionization regimes where 7y <1, the
ATT photoelectron distribution is consistent with the
classical simple-man picture [6,7]. The distribution in
this case has an exponentially decreasing amplitude and
a cutoff energy at 2U,. Beyond 2U, a flat plateau
emerges and extends to a cutoff at 10U, [8] due to back-
scattering of the ionized electron off the core [9,10].
The 2U, cutoff is well described by the first-order
S-matrix theory [5], often referred to as the ‘‘strong-
field approximation” (SFA) [3,5,11]. However, this
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approximation cannot account for the high-energy plateau
and the low-energy structure (LES), which is the focus of
this Letter.

One finding deviating from the SFA prediction is the
observed low-energy momentum distribution [12,13] of
the recoiling ions. Several explanations have been pro-
posed and are still under debate, tracing the effect to the
long-range Coulomb potential [14-16], Freeman reso-
nances [17,18], or the persistence of ATI peaks in the
tunneling regime [19,20]. Recently, another unexpected
LES has been reported in the ATI electron-energy distri-
bution, which becomes most significant at longer wave-
length or decreasing y <1 [21,22]. This LES is in stark
contrast to the prediction of the SFA model. A semiclas-
sical model has qualitatively attributed the effect to the
long-range Coulomb potential [22]. Calculations based on
numerical solution of the 3D time-dependent Schrodinger
equation (TDSE) [21] provide quantitative agreement but
little physical insight. In this Letter, we present a heuristic
analysis showing that the LES structure, which cannot be
accounted for by the lowest-order S-matrix theory (i.e.,
the SFA), is reproduced by the second-order amplitude.
The good agreement between our heuristic theory and the
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experimental data supports the conclusion that the LES
can be attributed to the dominance of the long-range
electron—parent-ion Coulomb interaction in the tunneling
regime.
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In our calculation, the Hamiltonian related to photoio-
nization is given by V, + V, with V,(r) the laser-atom
interaction and V the electron-parent ion Coulomb inter-
action. The S-matrix expansion is [5]

(1a)
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where |@;(1)) = |@o)e'’s" is the atomic ground state with 7,
the ionization potential and |W4 (P, t)) the Volkov wave
function with the final electron momentum p. The first
term [Eq. (la)] of this expansion is the standard SFA,
which describes the ‘““direct” electrons, which after they
have been liberated do not interact with the binding poten-
tial anymore. The second term allows for just one such
“rescattering” interaction, and each subsequent higher-
order term contains one additional interaction V, with
propagation in the presence of the laser field (Volkov
propagation) in between.

The second term [Eq. (1b)] generates the ATI plateau. It
exhibits a fivefold integration—two over time and one over
the intermediate vector momentum—yprovided that the
matrix elements of V and V4 can be evaluated analytically.
Normally, these integrations are carried out by the method
of steepest descent, which affords close contact with the
classical “‘simple-man” model via the concept of quantum
orbits. However, for very low momenta p, which are the
focus of this Letter, the reliability of this approximation is
not clear. If we commute the integrals over the ionization
time # and the rescattering time 7 with the one over the
intermediate momentum p’, then the former two can be
exactly evaluated and the rescattering amplitude [Eq. (1b)]
is converted into the double sum

T® =3 8(p*/2 — &y) f a’p'(p|VIp")
N

1 !
X Z WfN,n(p: |y ); (2)

n

where £, = nw — 1, — U, with U, the ponderomotive
potential and I, the ionization potential. The & function
comes from the integration over ¢ and the energy denomi-
nator is the result of the integration over #. The functions
fnn(p, p’) are sums over Bessel functions. In the current
context, it is only important that they are nonsingular when
p—r.

For a negative ion, where the electron is bound by a short-
range potential, e.g., the Yukawa potential exp(—«r)/r,
this procedure is straightforward. We have (p|V|p’)~
[(p—p')?+ «*]"", and the spectra calculated from Eq. (2)
for suitable k agree very well with the experimental data

[23]. The second-order term 7 is much smaller than the
first-order term TU), and the higher-order terms are com-
pletely insignificant. For a Coulomb potential, however,
we encounter a divergence, which originates from the sin-
gular behavior of the Coulomb scattering amplitude in the
forward direction, which is now (p|V|p’) ~ (p — p’) 2.
Namely, for N = n the integral over p’ in Eq. (2) is now
logarithmically divergent. This becomes clear if we substi-
tute the energy denominator according to 1/(x — ie) =
P(1/x) + iw6(x). The principal part does not contribute
while the & function causes p = p’ and, hence, the diver-
gence mentioned. A second related problem is that, for the
Coulomb potential, numerical estimates indicate that for low
momenta 7@ is larger than 7", and the higher-order terms
are likely to be larger still.

The latter situation is reminiscent of field-free Coulomb
scattering, where the exact scattering amplitude is (see,
e.g., Ref. [24])

£6) = — W exp{—iBInfsin(0/2] 0. (3)

with f, = exp[2iargl'(1 + iB)], B = Z/p, 0 the scatter-
ing angle, and Z is the product of the projectile and the
target charge. In an expansion in powers of Z, the lowest
order gives the Rutherford amplitude. Higher-order terms
exhibit logarithmically higher and higher orders of the
forward-scattering singularity at & = 0 so that each term
is larger in magnitude than the previous one. However, as
shown by Eq. (3), all of these terms sum to a phase, which
drops out of the scattering cross section, which is propor-
tional to |f(6)|?, thus restoring the first-order Rutherford
result. Terminating the expansion in terms of Z at any finite
order beyond the first generates a result that is inferior to
the one of first order.

This analysis cannot directly be repeated in the present
much more complicated time-dependent case. However, it
is very suggestive that the same mechanism is also hidden
in the expansion (1). With this in mind, we focus on the
second order T and ignore the higher-order terms. As
mentioned above, evaluation of the second-order term is
still impeded by the Coulomb-related divergence. On the
other hand, one might argue that an exact computation
should not exhibit any divergence, for the following
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reason: since the liberated electron starts its orbit near its
parent ion, when it returns it will scatter at a moderate
impact parameter, so it will never actually experience the
infinite range of the Coulomb potential. Therefore, one is
physically justified to cut off the Coulomb potential at a
safe distance away from the atom, thereby eliminating any
divergence and accomplishing a term-by-term conver-
gence of any expansion [25].

In this Letter, in the time-dependent case, we will take a
different route. As it will turn out, the fact that the atomic
ground state has a finite lifetime due to ionization is
sufficient to remove the divergent denominators that cause
the problems. Namely, in the S-matrix theory, the depletion
of the bound state can be introduced by inserting a decay
factor into the phase of the transition matrix element (1b),
by replacing [26]

o
It — 1,/ + . [
2 )

where we consider the interaction between the atom and
the laser pulse adiabatically turned on at time —7/2. Here,
in analogy with Ref. [26], w(7) is the time-dependent
ionization rate of the ground state. Using the saddle-point
approximation in the integral over ¢ in (1b), one now gets
the following equation for the tunneling process

drw(7), 4)
)2

Yo - AP = =1, = L), )

2 2
The real part of the additional term w(¢') explicitly gives a
finite width to the photoelectron momentum, as follows:
we approximate w(¢') by the time-independent depletion
rate I" of the ground state. Then, the energy denominator in
Eq. (2) is replaced by p”? — £, — il'/2, which is sufficient
to remove the divergence, since p and p’ are real. Note that
the solutions # of the saddle-point equation (5) are com-
plex (as they already are for I' = 0) [26], which is related
to the electron being liberated by tunneling.

The bottom line of this procedure is that introducing into
the theory an element of reality—the fact that the ground
state decays due to the action of the laser field—is suffi-
cient to remove all problems and to generate term-by-term
convergence. Moreover, as shown in Ref. [26], the deple-
tion of the ground state is introduced in a self-consistent
manner. For given laser parameters, the ground-state decay
rate I" is a well-defined number, which must be determined,
in principle, in a self-consistent fashion in parallel with the
expansion (1), so there is no need to guess a screening
constant for the calculation. Since it is impossible to cal-
culate the whole S-matrix expansion, we need to obtain a
value of I" by different means. We employ the Coulomb-
corrected SFA, which is known to be quantitatively con-
sistent with a numerical solution of the TDSE [27]. Equally
well, we could have used the TDSE or inserted a value
deduced from experiment. We remark that the calculated
spectrum is not very sensitive to the value of I', as long as

I' is small, which is the case for the intensity chosen in this
Letter.

The experiments were conducted using argon and xenon
under various laser conditions. A midinfrared beam with a
1/¢* diameter of 15 mm is focused by a 100 mm focal-
length CaF, lens into a vacuum chamber housing a 54 cm
time-of-flight electron or ion spectrometer. The 40-mm-
diameter w-channel plate detector provides a collection
angle of 4 deg. More details can be found in Refs. [21,28].
For argon, the LES is studied for fixed laser wavelength
(2 pm) and three different intensities [see Fig. 1(b)]. For
xenon in Fig. 1(d), U, is held constant by varying both
wavelength (1.7, 2, and 2.3 pm) and intensity. Figure 1(f)
shows results for xenon for fixed wavelength (3.6 wm) and
different intensities.

For these various conditions, the theoretical results given
by the second-order amplitude 7) [29] reproduce the low-
energy structure (left-hand panels of Fig. 1) observed in the
experiments (right-hand panels of Fig. 1) while the struc-
ture is absent in the first-order calculations, i.e., T
(dashed lines; all first-order results are shifted so that
they agree with the second-order calculation at energies
above the LES). It is noteworthy that, for the best consis-
tency between experiment and theory, laser intensities used
for the theoretical evaluations are 30%-50% less than
those used in the experiments. This discrepancy may be
partly due to uncertainty in the experimental intensity
calibration (20%) and focal volume distribution averaging
(a Gaussian distribution is assumed in the calculation).
Moreover, as discussed above, the higher-order terms
neglected in the S-matrix expansion may also contribute.

Two interesting features are apparent in Fig. 1: (i) the
experimental studies show—and this is reproduced by the
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FIG. 1 (color online). Low-energy photoelectron energy spec-
tra of Ar [(a),(b)] and Xe [(c)—(f)] in a midinfrared laser field.
(a),(c),(e) Calculated from Egs. (1b) (solid line) and (1a) (dashed
line); (b),(d),(f) experimental results.
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calculations—that the high-energy boundary FEj of
the LES is well defined and has a strong dependence on
the intensity, and (ii) the profile of the LES remains the
same for fixed U,, irrespective of the laser wavelength
[see Figs. 1(c) and 1(d)]. In Ref. [21] it was observed that
Ey = y~ 18 regardless of the species, which is consistent
with available TDSE calculations. However, no clear inter-
pretation was offered. The present calculation predicts the
scaling Ey; o y~ 15 or, alternatively, Ey; o Uy* (Fig. 2).
Neither the calculation nor the available data allows us to
discriminate between these two scalings. It is noteworthy
that the systematic discrepancy between theoretical and
experimental results due to, e.g., the calibration of inten-
sity, does not affect the scaling law. According to our
model, the LES originates from the photoelectron—
parent-ion interaction. If the effect of the Coulomb poten-
tial were independent of the electron kinetic energy, Ey
would scale as 'y_2 or Up,. However, since the effect
decreases with increasing kinetic energy, the scaling

reduces to about y~'5 or U3* The second-order
S-matrix calculation therefore sheds some new light on
the scaling and allows us to appreciate the dependence of
the Coulomb effect on the photoelectron energy.

A crucial question is under which conditions the LES
becomes observable in the ATI spectrum. Our analysis of
the scaling of the upper boundary Ey of the LES shows that
itis located at an energy much below U,,. This implies that
the LES is well developed only when U, is sufficiently
large. Moreover, to distinguish the LES from the ATT peaks
in the spectrum requires U, > w (the laser frequency).
These conditions are usually fulfilled in the tunneling
regime and, in this regime, the individual ATI peaks, which

Theory Experiment
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FIG. 2 (color online). The dependence of the LES high-energy
boundary Ey on the Keldysh parameter y and the ponderomo-
tive energy U, for various atoms and wavelengths. Left-hand
column: Theoretical results; right-hand column: experimental
results.

obstruct the visibility of the LES, are always smeared out
due to focal-volume averaging.

Although the theory proposed in this Letter consistently
explains the LES profiles observed in recent tunneling
ionization experiments [21,22], several questions remain
to be resolved. One concerns the significance of the higher-
order terms in the expansion (1). Surely, in the present
time-dependent case they will not merely contribute a
phase as they do for time-independent Coulomb scattering
[Eq. (3)]. In addition, although the two experiments [21,22]
agree on the structure of the LES, Ref. [22] reports a sharp
peak below 1 eV—definitely below the LES—in all of the
measurements regardless of laser wavelength and intensity,
which was absent in Ref. [21] as well as in the theoretical
calculation in this Letter. This peak, which may be referred
to as the very-low-energy structure (VLES) [30], was also
reproduced in semiclassical and TDSE analysis, in which it
was attributed to the relatively strong influence of the
Coulomb potential on the outgoing photoelectrons with
low kinetic energy [22,30,31]. This semiclassical effect
may in our model be related to multiple scattering of the
photoelectron in the Coulomb field of the parent ion. Our
current second-order analysis did not generate this peak,
suggesting it may be a consequence of the high-order terms
here neglected. This will be pursued in future work.

How does the present simulation of the LES compare
with earlier explanations? Owing to the peculiar nature of
the Coulomb potential, this question is not easy to answer.
Apparently, our theory—if interpreted in terms of the
saddle-point approximation and the standard quantum
orbits—does not incorporate the effect of the binding
potential on the trajectories of the liberated electrons,
which appears as the origin of the LES in Refs. [31-34].
This would imply that first-order Coulomb scattering of
plane-wave electrons is sufficient to generate the LES.
However, (1) we did not use the saddle-point approxima-
tion and, moreover, (2) the latter yields for low energy
additional very short orbits (the so-called L orbits [35])
whose significance has not been explored in any detail. It is
possible that in a quantum mechanical S-matrix description
of ATI the interplay of the laser field and the Coulomb
field is already satisfactorily captured in the first Born
approximation.

In summary, a calculation of the lowest-order rescatter-
ing term (analogous to the lowest-order Born approxima-
tion) in a quantum mechanical S-matrix expansion of the
ionization amplitude was presented and compared with
extensive experimental data for various atoms, wave-
lengths, and intensities, which display the recently discov-
ered low-energy structure. The calculation was carried out
for very low momenta of the liberated electron and for an
unscreened Coulomb potential. It reproduces many fea-
tures of the data, including their wavelength and intensity
dependence and the corresponding scaling. Technically,
divergences due to the long-range Coulomb potential,
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which are normally encountered in high-order terms of the
S-matrix expansion, were removed by taking into account
the actual value of the depletion of the atomic ground state
due to ionization. It is proposed that to some extent the
lowest-order rescattering term provides an ‘‘effective”
description of forward rescattering and that the inclusion
of higher-order terms may neither be necessary nor even
desirable, in the same way that the first-order Born ap-
proximation yields the exact Coulomb scattering cross
section.
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