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We solve for the first time, the Faddeev equations for the bound state problem of the coupled

��N ��NN system to study whether or not a hypertriton with strangeness �2 may exist. We make

use of the interactions obtained from a chiral quark model describing the low-energy observables of the

two-baryon systems with strangeness 0, �1, and �2 and three-baryon systems with strangeness 0 and �1.

The��N system alone is unbound. However, when the full coupling to�NN is considered, the strangeness

�2 three-baryon system with quantum numbers ðI; JPÞ ¼ ð12 ; 12þÞ becomes bound, with a binding energy of

about 0.5 MeV. This result is compatible with the nonexistence of a stable 3
�H with isospin one.
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The strangeness Ŝ ¼ �2 sector has become an impor-
tant issue for theoretical and experimental studies of the
strangeness nuclear physics. The �N ��� interaction
accounts for the existence of doubly strange hypernuclei,
which is a gateway to strange hadronic matter. The
(K�, Kþ) reaction is one of the most promising ways of
studying doubly strange systems. �� hypernuclei can be
produced through the reactionK�p ! Kþ�� followed by
��p ! ��. Strangeness �2 baryon-baryon interactions
also account for a possible six-quark H dibaryon, which
has yet to be experimentally observed. The future E07
experiment from J–PARC [1,2] is expected to improve

our knowledge of the Ŝ ¼ �2 sector, giving ten times
more emulsion events for double-� hypernuclei.

On the experimental side, there are very few data in the

Ŝ ¼ �2 sector coming from the inelastic ��p ! ��
cross section at a lab momentum of around 500 MeV=c,
and from the elastic ��p ! ��p and inelastic ��p !
�0n cross sections for lab momenta in the range of
500–600 MeV=c [3–5]. The relevant information we
have is indirect and comes from double-� hypernuclei.
Their binding energies, B��, provide upper limits for that
of the H dibaryon, i.e., BH < B��. The first hypernuclear
events are quite old and admit several interpretations [6–8].
In 2001 the so–called Nagara event was reported [9],
interpreted uniquely as the sequential decay of 6

��He
emitted from a ��-hyperon nuclear capture at rest. The
mass and the values of B�� and of the �� interaction
energy, �B��, were determined without ambiguities. It
gave the most stringent constraint to the mass of the H
dibaryon to date, i.e., MH > 2223:7 MeV at a 90% con-
fidence level. It took almost one decade, but four more
double-� hypernuclear events were reported, from KEK
E176 and E373 experiments [1], still with preliminary
results. All the details are summarized in Table I.

Besides the double-� hypernuclei quoted in Table I,
there is a general consensus that the mirror �� hyper-
nuclei 5

��H-
5
��He are particle stable [10]. The existence

of a 4
��H bound state has been claimed by the AGS-E906

experiment [11], from correlated weak-decay pions
emitted sequentially by �� hypernuclei produced in a
(K�, Kþ) reaction on 9Be. The stability of the ��N
system was discarded long ago [12] by using symmetry
considerations with respect to the 3

�H, and therefore with-

out considering the important coupled channel effect due
to the existence of the �NN system.

Theoretically, the Ŝ ¼ �2 sector was recently put back
on the agenda by lattice QCD calculations of different
collaborations, NPLQCD [13] and HAL QCD [14], pro-
viding evidence for a �� bound state for nonphysical
values of the pion mass (m� ¼ 389 MeV and m� ¼
673 ! 1010 MeV, respectively). When performing qua-
dratic and linear extrapolations to the physical point [15], a
bound dibaryon (around 7 MeV) and a H at threshold,
respectively, are predicted. Reference [15] presents pre-
liminary results for m� ¼ 230 MeV, much closer to the
physical pion mass, pointing to a H dibaryon at threshold,
as also experimentally suggested by the enhancement of
the �� production near threshold found in Ref. [16].
The purpose of this Letter is twofold. On the one hand

we present the solution of the Faddeev equations for the

TABLE I. Double � hypernuclear events.

Event Nuclide B�� (MeV) �B�� (MeV)

1963 10
��Be 17:7� 0:4 4:3� 0:4

1966 6
��He 10:9� 0:5 4:7� 1:0

1991 13
��B 27:5� 0:7 4:8� 0:7

NAGARA 6
��He 6:91� 0:16 0:67� 0:17

MIKAGE 6
��He 10:06� 1:72 3:82� 1:72

DEMACHIYANAGI 10
��Be 11:90� 0:13 �1:52� 0:15

HIDA 11
��Be 20:49� 1:15 2:27� 1:23
12
��Be 22:23� 1:15 . . .

E176 13
��Be 23:3� 0:7 0:6� 0:8
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bound state problem of the coupled ��N-�NN system.
The system has been formally studied and its Faddeev
equations written down [17,18], although they have never
been applied in a numerical calculation with realistic two-
body interactions. This is basically due to the fact that one
requires a model of the baryon-baryon interaction which
should be able to simultaneously describe two-baryon
states with strangeness 0, �1, and �2 within a single
consistent theoretical framework. Afterwards, we will
apply the formalism by means of the interactions obtained
from a chiral quark model describing the low-energy

observables of the two-baryon systems with strangeness
0,�1, and�2 and also three-baryon systems with strange-
ness 0 and �1, trying to elucidate the nature of the three-
baryon system with strangeness �2.
The coupled ��N-�NN system is peculiar because it

has two identical particles in each of its two components
although they are of different type, which complicates
considerably its analysis. The Faddeev equations for the
bound-state problem of the coupled ��N-�NN system
have been derived in Ref. [18]. We have obtained these
same equations by an independent method [19], they read:

T�NN ¼ tNN;NNð1� P23ÞP13P23G
N�N
0 TN�N;

TN�N ¼ tN�;N�P12P23G
�NN
0 T�NN � tN�;N�P13G

N�N
0 TN�N þ tN�;��ð1� P23ÞP13P23G

�N�
0 T�N�;

TN�� ¼ t��;N�P12P23G
�NN
0 T�NN � t��;N�P13G

N�N
0 TN�N þ t��;��ð1� P23ÞP13P23G

�N�
0 T�N�;

T�N� ¼ tN�;N�P12P23G
N��
0 TN�� � tN�;N�P13G

�N�
0 T�N�;

(1)

whereGijk
0 is the propagator for three free particles ijk, tij;kl

are the two-body tmatrices for the different transitions ij !
kl, andPij is the exchange operator for particles i and j. The
first superscript in the T functions is the spectator and the
other two are the interacting pair. We will solve these
equations including all the S-wave configurations ‘i ¼
�i ¼ 0, where ‘i is the orbital angular momentum between
particles j and k, and �i is the orbital angular momentum
between particle i and the pair jk. Therefore, the total
angular momentum J ¼ 1=2 is equal to the total spin.

The set of Eqs. (1) are integral equations in two con-
tinuous variables which couple the nine two-body channels
obtained from Table II. In order to solve these equations we

use the method applied in our previous works [20,21],
where the two-body t matrices are expanded in terms of
Legendre polynomials leading to integral equations in only
one continuous variable coupling the various Legendre
components required for convergence.
In each of the two components of the coupled

��N-�NN system we take particles 2 and 3 to be the
two identical ones and particle 1 to be the different one. We
will take the basis states 1 and 3 using a cyclic coupling
scheme, i.e., 1 ¼ ð2þ 3Þ þ 1, and 3 ¼ ð1þ 2Þ þ 3,
while for the basis state 2 we use the anticyclic scheme 2 ¼
ð1þ 3Þ þ 2. With these conventions, Eqs. (1) take the
explicit form [19],

T�NN
�1m ðq1Þ ¼ 2

X

�3n

Z 1

0
q23dq3K

NN;NN;N�N
mn;�1�3;13

ðq1q3ÞTN�N
�3n ðq3Þ;

TN�N
�3m ðq3Þ ¼

X

�1n

Z 1

0
q21dq1K

N�;N�;�NN
mn;�3�1;31

ðq3q1ÞT�NN
�1n ðq1Þ �

X

�0
3
n

Z 1

0
q023 dq

0
3K

N�;N�;N�N
mn;�3�

0
3
;23 ðq3q03ÞTN�N

�0
3
n ðq03Þ

þ 2
X

�0
3
n

Z 1

0
q023 dq

0
3K

N�;��;�N�
mn;�3�

0
3
;13

ðq3q03ÞT�N�
�0
3
n
ðq03Þ;

TN��
�1m ðq1Þ ¼

X

�0
1
n

Z 1

0
q021 dq01K

��;N�;�NN
mn;�1�

0
1
;31 ðq1q01ÞT�NN

�0
1
n ðq01Þ �

X

�3n

Z 1

0
q23dq3K

��;N�;N�N
mn;�1�3;23

ðq1q3ÞTN�N
�3n ðq3Þ

þ 2
X

�3n

Z 1

0
q23dq3K

��;��;�N�
mn;�1�3;13

ðq1q3ÞT�N�
�3n ðq3Þ;

T�N�
�3m ðq3Þ ¼

X

�1n

Z 1

0
q21dq1K

N�;N�;N��
mn;�3�1;31

ðq3q1ÞTN��
�1n ðq1Þ �

X

�0
3
n

Z 1

0
q023 dq03K

N�;N�;�N�
mn;�3�

0
3
;23

ðq3q03ÞT�N�
�0
3
n
ðq03Þ; (2)

where
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K��;��;��	
mn;�i�j;kl

ðqiqjÞ ¼ 2mþ 1

4
A
�i�j

kl

Z 1

�1
d cos


Z 1

�1
dxiPmðxiÞPnðxjÞt��;���i

ðpi; p
0
i;Eþ �E� q2i =2�iÞ

� 1

Eþ �E� p02
j =2�j � q2j=2�j

: (3)

�j and �j are the usual reduced masses and PnðxÞ
is a Legendre polynomial. pi ¼ bð1þ xiÞ=ð1� xiÞ,
xj ¼ ðpj � bÞ=ðpj þ bÞ, and b is a scale parameter
on which the solution does not depend. p0

i ¼½q2j þ ð�iqi=mkÞ2 þ 2ð�iqiqj=mkÞ cos
�1=2, pj ¼ ½q2iþð�jqj=mkÞ2 þ 2ð�jqiqj=mkÞ cos
�1=2, and �E ¼ 0 if the
corresponding state (either i or j) belongs to the N��
component, while �E ¼ 2m� �mN �m� if the corre-
sponding state belongs to the �NN component. Finally,
A
�i�j

kl are the usual spin-isospin transition coefficients [20],
where �� is the interacting pair in the state i and �	 is the
interacting pair in the state j.

For practical purposes, we took into account all the
S-wave two-body amplitudes that contribute in Eqs. (2)
as shown in Table II. Even though our calculation will
include only two-body S waves, the corresponding two-
body amplitudes will be obtained from a full model,
including D waves in spin-triplet channels and the cou-
pling to higher mass states in those cases where the quan-
tum numbers allow for it.

Once the method to solve the bound state problem of the
��N-�NN system has been designed, we apply it to the
chiral quark model of the baryon-baryon interaction devel-
oped in Ref. [22]. The model is capable of describing the
low-energy parameters of the two-nucleon system, the
S-wave phase shifts, and the triton binding energy [23].
It reproduces the elastic and inelastic scattering cross

sections of the Ŝ ¼ �1 two-baryon systems and the hyper-
triton binding energy [20,21]. As can be seen in Fig. 2 of
Ref. [21], the isospin one�NN system is unbound. Finally,
the model provides parameter-free predictions for the elas-

tic and inelastic scattering cross sections of the Ŝ ¼ �2
two-baryon systems [24] that are consistent with the scarce
available data. In particular, the relevant ��p ! �� is
correctly described (see Fig. 2 of Ref. [24]). Thus, we are
confident that the interactions are realistic enough to allow
for the study of the existence (or nonexistence) of the
strangeness �2 hypertriton.

The H dibaryon has strangeness�2, positive parity, and
isospin and spin ði; jÞ ¼ ð0; 0Þ. It appears in our model as a
bound state of the coupled ��-N�-�� system with a
binding energy of 6.928 MeV [24]. Therefore, the main
configuration of the strangeness�2 hypertriton will be a H
dibaryon as the interacting pair and a S-wave nucleon as
spectator, which leads to total isospin and spin ðI; JÞ ¼
ð12 ; 12Þ and positive parity. This configuration is also favored
by having a deuteron as interacting pair and a S-wave �
hyperon as spectator. We give in Table II all the S-wave
two-body channels that contribute to the ðI; JPÞ ¼ ð12 ; 12þÞ
three-body state. The NN channels have, of course,
strangeness 0, the N� channels have strangeness �1,
and the �� and N� channels both have strangeness �2.
As can be seen from this table, the ��N and �NN
systems are coupled together through the ði; jÞ ¼ ð0; 0Þ
two-body channel.
In Ref. [21] we calculated the hyperon-deuteron (Yd)

scattering lengths as well as the hypertriton binding energy
taking into account all the S- and D-wave components that
contribute in the various three-body channels. From a
combined analysis of the nucleon-hyperon (NY) two-
body data, the Yd scattering lengths, and the hypertriton
binding energy, we were able to constrain the allowed
values of the �N spin-triplet and spin-singlet scattering
lengths as 1:41 � a�N

1=2;1 � 1:58 fm, and 2:33 � a�N
1=2;0 �

2:48 fm. Therefore, we now make use of the NY interact-
ing models satisfying these constraints to calculate the
binding energy of the strangeness �2 hypertriton. The
results obtained in the full coupled channel problem
��N-�NN are shown in Table III. As one can see from
this table, the strangeness �2 three-baryon system with
quantum numbers ðI; JPÞ ¼ ð12 ; 12 þÞ is bound, the binding

energy varying between 0.4 and 0.6 MeV. However, as
predicted in Ref. [12] due to the nonexistence of an isospin
one 3

�H bound state, the ��N system alone is not bound.

The bound state only appears when the coupling between

TABLE III. Binding energy of the strangeness �2 hypertriton
(in MeV) measured with respect to the NH threshold for several
models of the NY interaction satisfying the constraints of
Ref. [21] for the N� scattering lengths, aN�

i;j (in fm).

aN�
1=2;1

1.41 1.46 1.52 1.58

2.33 0.416 0.455 0.495 0.542

aN�
1=2;0 2.39 0.424 0.463 0.504 0.551

2.48 0.447 0.487 0.528 0.577

TABLE II. S-wave two-body channels (i, j) of the various
subsystems that contribute to the strangeness �2 ðI; JPÞ ¼
ð12 ; 12 þÞ three-body state.

Subsystem (i, j) channels

NN (0,1),(1,0)

N� ( 12 , 0), (
1
2 , 1)

�� (0,0)

N� (0,0),(0,1),(1,0),(1,1)
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the ��N and �NN components is considered, i.e., when

the ði; jÞ ¼ ð0; 0Þ two-body t��;N� amplitude is included
in the calculation.

The relevance of the ��-�N coupling for double-�
hypernuclei has been emphasized for the case of the 4

��H
hypernucleus [25,26]. If this system is studied with NN,
N�, and �� interactions improved for the description of
the 6

��He, it is found to be unbound. In the case of the
6
��He the��-N� coupling plays a minor role, because the

nucleon generated in the transition must occupy an excited
p shell, the lowest s shell being forbidden by the Pauli
principle. This is not the case for the 4

��H, where the

nucleon generated by the ��-N� transition can occupy
a hole in the lowest s shell. This effect generates theoretical
binding for the 4

��H [25] and it is also responsible for

generating binding in the strangeness �2 three-baryon
system with quantum numbers ðI; JPÞ ¼ ð12 ; 12þÞ. It is there-
fore important to obtain experimental information about
the strength of the ��-�N coupling. It could be derived
from the measurement of the 4

��H binding energy. In the

meantime, the only available experimental data are the
inelastic cross section ��p ! ��, correctly described
by the present model (see Fig. 2 of Ref. [24]).

The possible existence of a strangeness �2 hypertriton
will give a strong impact on forthcoming experimental
projects as well as ongoing theoretical studies.
Experimentally, it could be measured in the J-PARC-E07
experiment, where more than 103 �� nuclei are expected
to be detected by means of �-capture reactions using
different target nuclei: C, N, and O [27]. Theoretically,
lattice QCD has evolved to the point where the calculation
of the binding energy of light nuclei and hypernuclei with

A � 4 and Ŝ � 2, at unphysically heavy light-quark
masses, is possible [28]. Extrapolations to the physical
light-quark masses have not been attempted because the
quark mass dependences of the energy levels in the light
nuclei are not known. Future calculations at smaller lattice
spacings and at lighter quark masses will facilitate
such extrapolations and, therefore, comparison with ex-
periment and, thus, the analysis of the strangeness �2
hypertriton.

In summary, we have solved for the first time the Faddeev
equations for the bound state problem of the coupled
��N-�NN system to study whether or not a hypertriton
with strangeness �2 may exist. We make use of the inter-
actions obtained from a chiral quark model describing the
low-energy observables of the two-baryon systems with
strangeness 0, �1, and �2 and three-baryon systems with
strangeness 0 and �1. The ��N system alone is unbound
in agreement with the nonexistence of an isospin one 3

�H
bound state. However, when the full coupling to �NN is

considered through the ði; jÞ ¼ ð0; 0Þ two-body t��;N�

amplitude, the strangeness �2 three-baryon system with

quantum numbers ðI; JPÞ ¼ ð12 ; 12þÞ becomes bound, with a

binding energy of about 0.5 MeV.
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