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We adapt the Goldstone theorem to study spontaneous symmetry breaking in relativistic theories at

finite charge density. It is customary to treat systems at finite density via nonrelativistic Hamiltonians.

Here, we highlight the importance of the underlying relativistic dynamics. This leads to seemingly new

results whenever the charge in question is spontaneously broken and does not commute with other broken

charges. We find that that the latter interpolate gapped excitations. In contrast, all existing versions of the

Goldstone theorem predict the existence of gapless modes. We derive exact nonperturbative expressions

for their gaps, in terms of the chemical potential and of the symmetry algebra.
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Preliminary considerations.—Nonrelativistic Goldstone
theorems [1–6] display interesting twists compared to the
standard relativistic one [7,8]. First, the nonrelativistic
version is notoriously less powerful. For instance, it guar-
antees the existence of gapless zero-momentum excitations
but says nothing about their properties, such as, e.g.,
stability, at finite momenta. A physically relevant example
is phonons in superfluid helium-4, which are unstable with
a decay rate �� k5—that is, they are not really eigenstates
of the Hamiltonian. Second, as far as counting is con-
cerned, a classic result by Nielsen and Chadha [2] states
that, for nonrelativistic systems, the number of gapless
Goldstone excitations equals the number of spontaneously
broken generators, provided one counts the Goldstone
excitations with an even dispersion law (e.g., !� k2)
twice.

However, to the best of our knowledge, all fundamental
interactions are described by relativistic field equations.
This means that, for the so-called nonrelativistic systems in
the real world, Lorentz invariance is broken only sponta-
neously, i.e., by the state of the system, rather than at the
level of the dynamics. It is thus tempting to ask whether the
very constrained framework of relativistic field theories
can give nontrivial insights into physical systems that are
effectively nonrelativistic—and in particular, whether it
can be used to sharpen or correct the nonrelativistic ver-
sions of the Goldstone theorem.

An immediate reaction to this idea is that in no way can
relativistic effects be relevant for systems that, like con-
densed matter systems in the lab, have a very nonrelativ-
istic equation of state, a very small speed of sound
compared to that of light, and so on. But there is more to
relativity than just the so-called ‘‘relativistic effects,’’
which are weighed by ðv=cÞ2. First, there is the statement
of relativity itself—that all inertial frames are equivalent—
which is valid, and powerful, even in the c ! 1 limit,

corresponding formally to the Galilean limit of Lorentz
invariance. Then, there are properties of relativistic field
theories that are not directly statements of symmetry but
that are nevertheless crucial for the consistency of the
theory. For instance, we will see below that the vanishing
of commutators for spacelike separated local operators can
be used to remove an assumption of the Nielsen-Chadha
theorem. Finally—and this will be the useful aspect for our
purposes—the fundamental relativistic viewpoint offers an
unambiguous starting point to analyze the pattern of spon-
taneous symmetry breaking for spacetime symmetries and
internal ones.
To clarify this last statement with an example, let us

consider directly the system we want to focus on for the
rest of Letter: a relativistic theory with Hamiltonian H and
a group of internal symmetries at finite density for one of
the corresponding charges, Q. The ground state j�i (i.e.,
the state of minimal energy for a given average charge
density) can be found by the method of Lagrange multi-
pliers as the state minimizing the modified Hamiltonian
~H ¼ H��Q, where � is the chemical potential [9],

~Hj�i ¼ ðH ��QÞj�i ¼ 0: (1)

It is standard practice to use the nonrelativistic
Hamiltonian ~H to study the system at finite density [10].
However, it is clear from the outset that we are in the
presence of a spontaneous—rather than explicit—breaking
of Lorentz symmetry. Introducing ~H is purely a mathe-
matical tool to find a state with the desired properties. The
Hamiltonian of the system is still H. The Heisenberg-
picture operators evolve in time as dictated by H. In order
to better understand the role of ~H, consider the case in
which the (internal) symmetry generated by Q is also
spontaneously broken, i.e.,

h�j½Q;AðxÞ�j�i � 0 (2)
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for some order parameter AðxÞ. Then, j�i cannot be an
eigenstate ofQ because this would be inconsistent with (2).
But, since j�i obeys Eq. (1), it cannot be an eigenstate ofH
either. We conclude that, at finite density for Q, if Q is
spontaneously broken, so isH [11]. This means that, ifQ is
broken, we cannot classify the states of the system—
including our ground state j�i—as eigenstates of the fun-
damental Hamiltonian H. The best we can do is try to
diagonalize the unbroken combination ~H ¼ H ��Q. j�i
is the eigenstate with the lowest eigenvalue. The excita-
tions of the system—including the Goldstone bosons—will
correspond to higher eigenstates.

Since the Nielsen-Chadha theorem implicitly assumes
that Heisenberg-picture operators evolve in time with the
same (nonrelativistic) Hamiltonian that is minimized by
the ground state, we conclude that that theorem does not
apply to systems that are ‘‘nonrelativistic’’ because of a
finite density for a charge that is spontaneously broken.
Indeed, for such systems, it is not even clear how one
would study the spontaneous breaking of Q in a setup
that is nonrelativistic from the start. There are systems of
this sort whereQ is broken ‘‘before’’ (i.e., at higher energy
scales) the Lorentz invariance is broken: Any relativistic
theory with ordinary spontaneous symmetry breaking in its
Poincaré-invariant vacuum can be put in a state of arbi-
trarily low density for the broken charge [11].

When there are local operators obeying (2), an alterna-
tive viewpoint suggests itself. By Eq. (1), the action of the
Hamiltonian on j�i is proportional to that of the symmetry
generator. We are thus in the presence of a state that
evolves in time along a symmetry direction, at ‘‘speed’’
�. Any field �jðxÞ that transforms nontrivially under the

symmetry can then feature a spacially homogeneous, time-
dependent expectation value, obeying

d

dt
h _�ji ¼ �h��ji; (3)

where �j ! �j þ ��j is the action of the symmetry in

field space. In Ref. [11], we dubbed this situation ‘‘sponta-
neous symmetry probing’’ (SSP)—there, we were using c
in place of �. This viewpoint is particularly useful in the
semiclassical limit, where we can think of time evolution in
terms of classical trajectories in field space. We refer the
reader to Ref. [11] for details.

Assumptions and formalism.—We now want to study the
low-energy spectrum of the system at finite density by con-
sidering the Goldstone states associated with Q and with
other broken generators. Let us assume that the theory enjoys
a Lie group of internal symmetries, with generators
Q1; Q2; . . . ; QN. Without loss of generality, we can set the
first generator to be our Q, Q ¼ Q1. The remarks we made
above lead to the following hypotheses: (a) The Heisenberg-
picture currents evolve in time as dictated by the original

Hamiltonian, i.e., J
�
a ðt; ~xÞ ¼ eiðHt� ~P� ~xÞJ�a ð0Þe�iðHt� ~P� ~xÞ,

where a ¼ 1; . . . ; N and ~P is the total momentum operator;

(b) the state j�i is the ground state of ~H ¼ H ��Q. The
crucially different role played byH and ~H is the origin of the
discrepancy between our results and the existing literature on
nonrelativistic Goldstone theorems, e.g., Refs. [2–5].
Consider then the case in which the first n of the Qa’s—

including Q1—are spontaneously broken. By definition,
for each spontaneously broken Qa, there must exist a local
operator AIðxÞ—an ‘‘order parameter’’—that makes the
matrix element

�aI � h�j½QaðtÞ; AIð0Þ�j�i (4)

nonzero. The index I ¼ 1; . . . ; m � n in general runs over
fewer values than the number of broken generators simply
because the same AIðxÞ typically serves as an order pa-
rameter for two or more symmetries.
In the matrix element above, AIðxÞ is evaluated at the

(spacetime) origin. From now on, to simplify the notation,
whenever a local operator is evaluated at the origin, we will
drop its argument, Oð0Þ ! O. Qa is formally evaluated—
in the Heisenberg picture—at time t. But, since Qa com-
mutes with the Hamiltonian, it is constant in time, and so
is the �aI matrix element. To convince oneself that this is
true even though spontaneously broken charges are not
completely well-defined operators, one can use the local
conservation of the current:Z

d3xh�j½ _J0að ~x;tÞ;AI�j�iþ
Z
d3xh�j½@iJiað ~x;tÞ;AI�j�i¼0:

The first term is the time derivative of our �aI, while
the second is a boundary term that only receives contribu-
tions from spacial infinity. Since, for relativistic quantum
field theories, the commutator of spacelike separated local
operators vanishes—and we are breaking Lorentz symme-
try only spontaneously—such a term is guaranteed to
vanish [12]. We conclude that �aI is constant in time.
We now use assumptions (a) and (b) above to ‘‘pull out’’

of J0a its ~x and t dependence:

�aI ¼
Z

d3xh�jJ0að ~x; tÞAIj�i � c:c:

¼
Z

d3xh�jei�QtJ0ae
�iðHt�P� ~xÞAIj�i � c:c:; (5)

where we used that spacial translations are not spontane-

ously broken, ~Pj�i ¼ 0, and we are assuming that both J0a
and AI are Hermitian operators. Inside the matrix element,
we now insert a complete set of intermediate momentum
eigenstates jn; ~pi, where n labels other quantities that
characterize these states. Schematically,

h�jei�QtJ0ae
�iðHt�P� ~xÞAIj�i

¼X
n;p

ei ~p� ~xh�jei�QtJ0ae
�i�Qte�i ~Htjn; ~pihn; ~pjAIj�i; (6)

where we rewroteH in terms of ~H andQ. The Hamiltonian
~H commutes with the spatial momentum because H and
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Q do. We can then choose the jn; ~pi states to be eigenstates
of ~H as well, with eigenvalues Enð ~pÞ. The integral in d3x
projects onto the zero-momentum states, and we are
left with

�aI ¼
X
n

e�iEnð0Þth�jei�QtJ0ae
�i�Qtjn; 0ihn; 0jAIj�i � c:c:

(7)

The constancy in time of the above expression gives
important information about the spectrum of the theory in
the limit of zero spatial momentum. There are two distinct
cases to consider, depending on whether Qa commutes
with Q � Q1 or not. For brevity, let us call these two
classes of generators C and NC, short for ‘‘commuting’’
and ‘‘noncommuting.’’ We will show that C generators
interpolate states jn; ~pi that have zero energy in the limit
of zero momentum, Enð0Þ ¼ 0. Vice versa, NC generators
interpolate states that are gapped, in the sense that
Enð0Þ � 0.

C generators: Gapless modes.—Equation (7) should be
compared with Eq. (6) of Nielsen and Chadha’s paper [2].
They find that the quantity that is constant in time is, in our
notation,

�aI ¼
X
n

e�iEnð0Þth�jJ0ajn; 0ihn; 0jAIj�i � c:c: (8)

The implicit assumption leading to (8) is that all currents
evolve in time with the nonrelativistic Hamiltonian of
which j�i is the ground state ( ~H). This assumption is
violated by our system. However, our Eq. (7) does reduce
to (8) whenever Qa commutes with Q, since in this case
ei�QtJ0ae

�i�Qt ¼ J0a [13].
Note that, for jn; 0i ¼ j�i, the combination (8) just

gives zero because J0a and AI are Hermitian operators. In
order for �aI to be time independent and different from
zero, there must exist a Goldstone state j�; ~pi other than
j�i whose energy goes to zero in the zero-momentum
limit, E�ð0Þ ¼ 0. Moreover, the matrix elements
h�jJ0aj�; ~pi and h�; ~pjAIj�i should be nonzero for such
a state: Both the broken current and the order parameter AI

have to interpolate the Goldstone excitation.
Beyond this basic argument, the detailed analysis of the

number and nature of gapless Goldstone bosons follows
closely that of Ref. [2] and features all the subtleties
considered therein (see also Refs. [3,5,6] for more recent
refinements). We have nothing to add to the existing analy-
ses, other than to emphasize that they apply here to broken
generators of the C type only. Notice that, among the C
generators, we have Q itself. We devoted the bulk of
Ref. [11] to studying the physical properties of the asso-
ciated Goldstone boson.

NC generators: The gap.—Let us now consider the case
where Qa does not commute with Q ¼ Q1. For our pur-
poses, it is useful to write the commutation relations in
hybrid form with charges and currents (Once the algebra
for the charges is given, the charge-current commutators

are uniquely determined up to possible contact terms that
vanish at zero momentum, i.e., total spacial derivatives.
Since we took the ~p ! 0 limit, such possible extra terms
will not matter for us.)

½Qa; J
0
bðxÞ� ¼ ifcabJ

0
cðxÞ; (9)

where fcab are the group’s structure constants, which are

real for any Lie group. We can now go back to Eq. (7).
After expanding the exponentials on both sides of the
current, using recursively (9) to eliminate all Q’s and
reexponentiating the result, we find

ei�QtJ0ae
�i�Qt ¼ ðe�f1�tÞbaJ0b; (10)

where f1 is a matrix with entries fb1a. That is, if1 is the
adjoint representation of Q1, ðQA

1 Þba ¼ ifb1a. Equation (10)
above is nothing but the usual statement—applied to the
currents—that the generators of a group live in the adjoint
representation of that group.
The exponential acting on the current is now a finite

dimensional matrix that ‘‘mixes’’ in a time-dependent
fashion the different currents of the group:

�aI ¼
X
n

e�iEnð0Þtðe�f1�tÞbah�jJ0bjn; 0ihn; 0jAIj�i � c:c:

(11)

We will now assume—as usual—that the symmetry group
under consideration is the direct product of simple compact
Lie groups [SUðnÞ, SOðnÞ, etc.] and of Uð1Þ factors. In this
case, the structure constants fcab can be taken to be totally

antisymmetric—see, e.g., Ref. [8]. Since fb1a is real and
antisymmetric, its eigenvalues are either zero or pure
imaginary. The imaginary eigenvalues come in pairs
(þ iqa,�iqa), with corresponding Hermitian-conjugate
pairs of eigenvectors, defining a (non-Hermitian) basis of
generators in which

fb1a ¼ idiagð0; . . . ; 0; q1;�q1; q2;�q2; . . .Þ: (12)

By acting separately on each �qa block, it is straightfor-
ward to define instead a Hermitian basis, in which fb1a is
real and block diagonal, with 2� 2 blocks of the form

0 þqa

�qa 0

 !
: (13)

Let us assume that we started with Eq. (5) directly in this
Hermitian basis where fb1a is block diagonal, and let us
restrict our analysis to the spontaneously broken generators
that yield nonvanishing �aI. If J

0
a corresponds to a vanish-

ing eigenvalue of QA
1 ¼ if1—i.e., if it commutes with

Q1—then we go back to the C-generator case and we
conclude that J0a interpolates gapless particles. If, on the
other hand, J0a is either of the paired currents acted upon by
a 2� 2 block of the form (13), then the exponential in (11)
mixes its matrix elements with those of its companion, with
frequency �qa. In this case, the time independence of �aI

PRL 110, 011602 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

4 JANUARY 2013

011602-3



implies a nonzero value for Enð0Þ. This is most easily seen

by using a complex notation: J0a can be expressed as J0a ¼
Ĵ0a þ Ĵ0ya —where Ĵ0a and Ĵ0ya are a Hermitian-conjugate
pair of non-Hermitian generators that diagonalize f1, as in
(12)—and Eq. (11) simply becomes

�aI¼
X
n

e�i½Enð0Þ��qa�th�jĴ0ajn;0ihn;0jAIj�i

þe�i½Enð0Þþ�qa�th�jĴ0ya jn;0ihn;0jAIj�i�c:c: (14)

Notice that we are not implicitly summing over a. Without
loss of generality, we will assume that �qa is positive and
��qa negative.

By assumption, our j�i state is the ground state of the
unbroken ~H Hamiltonian. Therefore, there cannot be states
with negative Enð ~pÞ. So, for the combination (14) to be
constant in time and different from zero, two conditions
have to be met: (i) There exists a state j�a; ~pi whose
energy in the zero-momentum limit is

Eað0Þ ¼ �qa: (15)

This is our main result: the gap for the Goldstone excita-
tions associated with the broken NC generators. (ii) Both

Ĵ0a and AI are interpolating fields for such a state, in the

sense that h�jĴ0aj�a; ~pi � 0 and h�jAIj�a; ~pi � 0. (Recall
that AI is Hermitian.)

Notice that we have one gapped Goldstone mode for
each pair of broken NC generators. This is reminiscent of
the Nielsen-Chadha counting [2,3]. In fact, we still find
that, for even dispersion relations, the number of broken
generators is twice the number of Goldstones, just in the
broader sense that gapped states have an ‘‘even’’ dispersion
relation, i.e., EðpÞ � j ~pj0 þOðp2Þ. An intuitive picture of
what is going on is provided by the following example.

The linear SOð3Þ sigma model.—Consider a Lagrangian
with internal symmetry SOð3Þ, linearly realized on a scalar
triplet ~�:

L ¼ � 1

2
@� ~� � @� ~�� 1

2
m2j ~�j2 � 1

4
�j ~�j4: (16)

Let us pick one of the generators of SOð3Þ, say, � ¼ �3,
where �i generates rotations about the �i axis, and let us
consider the theory at finite charge density for the
corresponding charge Q. The standard way to build the
nonrelativistic Lagrangian at finite density—see, e.g.,
Refs. [10,14] —is to introduce a constant nondynamical
gauge field pointing in the time direction, which in our case
amounts to the replacement

� @��
y@�� ! ð@0 � i�Þ�yð@0 þ i�Þ�� @j�

y@j�;

(17)

where � is the complex combination � ¼ �1 þ i�2.
After going to polar coordinates, � ¼ �ei	, we find

Lð�Þ ¼ � 1

2
@��@

��� 1

2
�2@�	@

�	� 1

2
@��3@

��3

� 1

2
m2ð�2 þ�2

3Þ �
1

4
�ð�2 þ�2

3Þ2

þ��2 _	þ 1

2
�2�2: (18)

The ground state at finite chemical potential corresponds to
constant field solutions of this Lagrangian. While we
always have h�3i ¼ 0, there are cases when h�i � 0,
which spontaneously breaks the symmetry generated by

Q. This happens when the configuration ~� ¼ 0 was un-
stable to begin with (m2 < 0) or when the chemical poten-
tial exceeds a critical value (�2 >m2).
In the broken phase, the vacuum expectation value of the

radial field is h�i2 ¼ 1
� ð�2 �m2Þ. Expanded to second

order about this configuration, the Lagrangian (18) reads

Lð�Þ ’ � 1

2
@���@

���� 1

2
h�i2@�	@�	

� 1

2
@��3@

��3 þ 2�h�i _	��

� ð�2 �m2Þ��2 � 1

2
�2�2

3: (19)

Let us assume that h ~�i points in the �1 direction. Of the
whole SOð3Þ symmetry group, the only residual symmetry
is that associated with �1 —rotations about �1. This sym-
metry breaking pattern would normally be associated with
two massless Goldstone bosons, one for each broken gen-
erator. Instead, here we see that the would-be Goldstone
field�3 associated with �2 has acquired a massm3 ¼ �, in
agreement with our general result, since �2 does not com-
mute with �3. The angular field (	) is massless and can be
identified with the Goldstone boson associated with �3,
which obviously commutes with itself.
In the alternative (but equivalent) SSP language [11],

one starts from the relativistic Lagrangian (16) and looks
for a time-dependent background solution that rotates

about the �3 axis, with
_~� ¼ ��3 � ~�. This just corre-

sponds to a constant speed in the angular field, 	ðxÞ ¼
�t. Such solutions are allowed only form2 < 0 or for�2 >
m2, in agreement with what we found above. After expand-
ing in 	 fluctuations about such a solution, 	 ! �tþ 	,
one finds precisely the Lagrangian (18) and its quadratic
approximation (19), with the same excitation spectrum as
above. However, the SSP language is closer to the view-
point we emphasized in this Letter because it makes mani-
fest that having a finite charge density for a spontaneously
broken charge necessarily implies a spontaneous break-
down of time translations as well. Moreover, it stresses that
Lorentz invariance is broken spontaneously by the field
configuration one considers, rather than at the level of the
Lagrangian. And finally, it gets the breaking pattern for
internal symmetries right: All SOð3Þ generators are broken,
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albeit in a time-dependent fashion, in the sense that

h½�1; ~�ðxÞ�i and h½�2; ~�ðxÞ�i depend on time. This is what
one would discover from our general analysis above, if one
evaluated the order parameters AI at generic positions x
rather than at the origin.

Concluding remarks.— We conclude by stressing that
our derivation of Eq. (15) involved no approximation. As a
result, our expression for the gap is an exact nonperturba-
tive prediction. Our results evade the Nielsen-Chadha
theorem because one of its (implicit) assumptions is vio-
lated, namely, that Q commutes with all other broken
charges. This crucial difference should be taken into con-
sideration also when comparing our results with the litera-
ture, like for instance the ‘‘kaon condensation’’ model of
Refs. [4,5]. On the other hand, our results agree with the
theorem of Ref. [5], which states—among other things—
that there are no subtleties in counting the gapless
Goldstones for relativistic theories as long as all charge
densities vanish.
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