
Surface Code Threshold in the Presence of Correlated Errors

E. Novais1 and Eduardo R. Mucciolo2

1Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo 09210-170, Brazil
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We study the fidelity of the surface code in the presence of correlated errors induced by the coupling of

physical qubits to a bosonic environment. By mapping the time evolution of the system after one quantum

error correction cycle onto a statistical spin model, we show that the existence of an error threshold is

related to the appearance of an order-disorder phase transition in the statistical model in the thermody-

namic limit. This allows us to relate the error threshold to bath parameters and to the spatial range of the

correlated errors.

DOI: 10.1103/PhysRevLett.110.010502 PACS numbers: 03.67.Pp, 03.65.Yz, 05.50.+q

The surface code is considered one of the best quantum
error correction (QEC) codes to implement on physical
devices [1–3]. This stems from two major points: First, all
syndromes and operations can be performed with spatially
local operators; second, all threshold estimates show that,
for sufficiently large lattices, the error threshold is the
highest known for two-dimensional architectures with
only nearest-neighbor interactions [4–6].

The error threshold is usually defined for stochastic error
models. By assuming that errors are independent events
and assigning a probability p to each of these events, it has
been shown numerically that the quantum information
encoded in the surface can be faithfully protected when
p is below a critical value. Although this result is firmly
established numerically, there are two big open questions
that still need to be addressed. First, stochastic error mod-
els are approximations to reality that sometimes cannot be
justified. In fact, most studies so far lacked a microscopic
description of the interaction between physical qubits and
the environment. Second, the same locality of operations
and syndromes that makes the surface code powerful also
makes it more susceptible to correlated errors. Thus, a
discussion of the tradeoff between locality of operations
and correlated errors is long overdue. In this Letter, we
address both issues by employing a more realistic error
model. We consider a Caldeira-Leggett type of environ-
ment where freely propagating bosonic modes couple lin-
early and locally to the physical qubits. Such a model has a
very strong physical motivation, since in most experimen-
tal implementations photons and phonons couple to the
two-level systems making up the physical qubits. This
model also plays a fundamental role in our understanding
of decoherence [7] and its interplay with QEC [8–13].

Consider a logical qubit in a quantummemory. In a QEC
cycle, the logical qubit is prepared and left to freely evolve
during a certain time interval. Then, syndromes are
extracted, and, if necessary, suitable error correction op-
erations are implemented to bring the logical qubit back to
its original state. In our analysis, we evaluate the fidelity of

a logical qubit after such a QEC cycle under the assump-
tion of nonerror syndromes. This assumption is not essen-
tial to our results but makes the calculation more concise.
In addition, we assume that the bath is initially at zero
temperature and that it is reset to this temperature at the
end of the QEC cycle.
Our results show a sharp transition between two distinct

noise regimes. On one hand, below a fictitious critical
‘‘temperature’’ (which is related to microscopic parameters
of the bath), the dissipation due to the bath cannot be
suppressed by the encoding. On the other hand, above
this critical temperature, we show that if the thermody-
namic limit is taken, the effects of the bosonic environment
become irrelevant and the logical qubit is fully protected.
Even though this investigation focuses on quantum in-

formation protection, the physical problem we consider
has a much broader appeal. In essence, it amounts to a
lattice gauge system interacting with a scalar bosonic field
in two dimensions [14]. In this language, the nonexistence
of a quantum error threshold can be understood as the
lifting of the ground state topological degeneracy. Our
discussion of the error threshold can therefore be recast
as a quantum phase transition. This fits into our earlier
discussion of the threshold theorem as resembling a quan-
tum phase transition [9]. This analogy is nontrivial, since
the error threshold is in essence a driven dynamical prob-
lem, far from the equilibrium conditions required to
describe phase transitions in statistical mechanics. This
work turns what was an analogy into a well-defined map.
Therefore, we believe that the results presented here tran-
scend our original motivation and complement the recent
discussion in Ref. [13].
The model.—We consider physical qubits f ~�igi¼1;...;N

(i.e., spin 1=2 systems) located on the links of a square
lattice with open boundary conditions (see Fig. 1). The
QEC code is defined by an encoding prescription and a set
of stabilizer operators [15]. The stabilizer operators of the
surface code are easily labeled when we define stars and
plaquette operators. Star operators are the product of the
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four�x operators of qubits adjacent to a vertex of the square
lattice, A} ¼ Q

i2}�x
i . Similarly, plaquette operators are

the product of four�z of qubits located at the edges of a tile
of the square lattice, Bh ¼ Q

i2h�
z
i . Each plaquette and

star is a stabilizer that has to be measured at the end of a
QEC period. The logical operators are defined as �X ¼Q

i2��
x
i , where� is a path along the center of the plaquettes

crossing horizontally the lattice, and �Z ¼ Q
i2 ���

z
i , where

��
is a path along the edge of the plaquettes crossing the lattice
vertically. Finally, the codewords of the surface code are
also easily written:

fj�"i ¼ GjFzi; j�#i ¼ �Xj�"ig; (1)

where G ¼ 1ffiffiffiffiffiffi
2NA

p Q
}ð1þ A}Þ, NA is the total number of

possible stars, and jFzi is the ferromagnetic state along the
positive z direction, namely, jFzi ¼

Q
N
i¼1 j "ii;z.

The Hamiltonian we consider is written as

H ¼ H0 þ V; (2)

where H0 is a free bosonic Hamiltonian, H0 ¼P
k�0!ka

y
kak, and V ¼ �

2

P
rfðrÞ�x

r , where r denotes the

spatial location of a qubit and f is a local bosonic operator,

fðrÞ ¼ !0

LD

X
k�0

jkjsðeik�rayk þ e�ik�rakÞ: (3)

Here, D is the bath spatial dimension, !k ¼ vjkj, and !0

is a microscopic coupling that makes f dimensionless (we
adopt units such that @ ¼ 1). This error model leads to a
remarkably simple evolution operator in the interaction
picture: For a time interval �, with the environment start-
ing at its ground state, we have [12]

Ûð�Þ ¼ e�ð�2=2ÞNGrrð�Þe
�ð�2=2ÞP

r�s

�rsð�Þ�x
r�

x
s

:e
�i�

P
r

Frð�Þ�x
r

:;

(4)

where N is the total number of qubits, Grsð�Þ ¼
h0jFrð�ÞFsð�Þj0i, Frð�Þ ¼

R
�
0 dtfðr; tÞ, �rsð�Þ ¼

Grsð�Þ þ
R
�
0 dt1

Rt1
0 dt2½fðr; t1Þ; fðs; t2Þ�, and :: stands for

normal ordering. For Ohmic baths, the correlation function
for r � s takes the simple form [16]

�rsð�Þ ¼
�
!0

v

�
2

8><
>:
arcsh

�
v�
jr�sj

�
þ i�

2 ; 0< jr� sj< v�;

i arcsin
�

v�
jr�sj

�
; 0< v�< jr� sj:

(5)

Thus, we can introduce a fictitious inverse temperature

� ¼ 1
2 ð�!0

v Þ2 and rewrite the intermediate factor that contains

the two-spin interaction in Eq. (4) as e��
P

r�s
Jrs�

x
r�

x
s , where

Jrs represents an effective antiferromagnetic coupling [17].
To simplify the notation, we assume that the system is

prepared initially in the logical state j�"i and the boson field
initial state is the vacuum

jc 0i ¼ ðGjFziÞ � j0i: (6)

We then let the system evolve under the Hamiltonian H
until a time �, when an error correction protocol is per-
formed flawlessly.
The assumptions.—Sincewe are only allowing for bit-flip

errors, the syndromeoutcome for the star stabilizers is trivial.
For the plaquettes, in principle, all possible syndromes
should be considered. However, it is useful to look at the
most benign evolution and assume that all plaquette syn-
dromes return a nonerror. This nonerror syndrome provides
an upper bound to the available computational time and also
substantially simplifies the calculation, since it removes from
considerationwhich recovery operation should be performed
to steer the system back to the computational basis.
In QEC theory, it is standard to focus only on the qubit

system’s evolution and disregard any change to the envi-
ronment’s state, even though the latter is also a quantum
system capable of sustaining correlations. If no extra step is
taken to dissipate those correlations, the environment will
keep a memory of events that happened between the QEC
periods. Keeping track of such bath-induced, long-time
correlations between QEC cycles in a fidelity calculation
is a difficult task even for simple, nontopological logical
qubit systems [10,12]. Thus, to proceed with the calcula-
tion, we consider an extra step to the QEC protocol. In
addition to projecting the quantum computer wave func-
tion back to the logical Hilbert space, we assume that at the
end of the QEC step the environment is reset to its ground
state. Hence, from this point on, we are excluding from the
calculation any spatial correlation between QEC periods,
as well as memory and spatial correlations between the
time evolution of bras and kets. Physically, this is equiva-
lent to assuming that the environment thermalizes with an
even larger zero-temperature bath during the QEC period.
When we adopt this extra simplifying assumption, we can
conveniently rewrite the nonerror syndrome projector as

P0 ¼ jc 0ihc 0j þ �Xjc 0ihc 0j �X: (7)

By using Eq. (7), it becomes now straightforward to write
an expression for the logical qubit fidelity just after the
syndrome extraction:

A

B

(a)

X

Z

(b)

FIG. 1. (a) Star (A) and plaquette (B) operators. (b) Examples
of logical �X and �Z operators. The crosses and shades indicate the
qubits involved in the respective operator.
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F ¼ jAjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijAj2 þ jBj2p ; (8)

where A ¼ hc 0jÛð�Þjc 0i and B ¼ hc 0j �X Ûð�Þjc 0i.
Fidelity calculation.—Thus, our task now is reduced to

evaluateA andB. By using Eq. (4), it is straightforward to
show that

A ¼ �hFzje��HG2jFzi (9)

and

B ¼ �hFzj �Xe��HG2jFzi; (10)

where

H ¼ X
r�s

Jrs�
x
r�

x
s (11)

and � ¼ e�ð�2=2ÞNGrrð�Þ. Notice that, although we chose to
start with a microscopic model of the environment to make
a connection to physical implementations, we could as well
have started by imposing an effective two-body interaction
between qubits such as that defined by H .

Clearly, when � ! 0, we have B ! 0 and F ! 1. A
perturbative expansion for small � is the standard route to
discuss the error threshold. This ‘‘high-temperature’’ ex-
pansion will be discussed elsewhere. Here we follow a
different route. To understand the opposite limit � ! 1,
we need to rewrite jFzi in the x basis:

jFzi ¼
YN
i¼1

�j"ii;x þ j#ii;xffiffiffi
2

p
�
: (12)

This dual representation corresponds to a ‘‘low-
temperature’’ expansion, and it is suitable for describing
the regime where error correlations are strong. Inserting
Eq. (12) into (9) and (10), we obtain

A ¼ �

2N
X
S

e��EshSjG2jSi; (13)

B ¼ �

2N
X
S

e��EshSj �XG2jSi; (14)

respectively, where jSi is an element of the x basis and
Es ¼ hSjH jSi is its ‘‘energy.’’ Notice that Es may have an
imaginary part.

If we had unrestricted sums in Eqs. (13) and (14), we
would be essentially discussing a two-dimensional Ising
model. However, G2 projects jSi onto the subspace of
positive stars and, among other things, removes the time
reversal state of jS��i from the sum. This restriction makes
the computation of A and B nonstandard. Nevertheless,
the action of �X is to introduce a sign between two distinct
classes of states. To better understand this, we need a more
convenient way to write the states jSi in the restricted
subspace of positive stars. It is not hard to prove that these
states fall into two groups, fjSþig and fjS�ig, where

jSþi ¼
Y
j

Bhj
jFxi and jS�i ¼ �Z�jSþi: (15)

(See Fig. 2.) Here,
Q

jBhj
is a product of plaquettes that do

not touch a logical error �Z�, and jFxi is the ferromagnetic

state in the x basis. Splitting the terms of the sums in
Eqs. (13) and (14) between these two groups of states,
we rewrite A ¼ �

2N
ðTþ þT�Þ and B ¼ �

2N
ðTþ �T�Þ,

where

T � ¼ X
S�

hS�je��H jS�i: (16)

Thus, we have to evaluate the ‘‘free energies’’ of the two
groups of states (see Fig. 2).
The double sum in H [see Eq. (11)] runs over lattice

points r and s inside and outside the path of the logical
operator �Z�. Thus, let us break these points into two sets,

namely, frg ¼ ft�g � fu�g and fsg ¼ fv�g � fw�g, where t�
and v� belong to �Z� while u� and w� do not. Furthermore,

let us factor the sum over all Sþ into a sum over paths �
and a sum over configurations S�þ compatible with a logical
operator along this path, namely,

P
S� ¼ P

�

P
S��

. After

some simple algebra, we obtain T � ¼ P
�e

����
P

S��
z��,

where �� ¼ hS��j
P

tvJtv�
x
t�

x
vjS��i and

z�� ¼
�
S�þje

��
P
u�w

Juw�
x
u�

x
w��

P
w

h�w�
x
w jS�þ

�
; (17)

with h�w ¼ P
tJtw. We can see that the effect of the logical

operator �Z� is to introduce a boundary term represented by

the effective local magnetic field h�w.
We are now in the position to state our definition of the

quantum error threshold. We define the critical parameter
�c as the value of� that separates the regimewhereF ¼ 1
from the regime where F < 1 in the thermodynamic limit
(N ! 1).
Phase transition.—The evaluation of z�� in Eq. (17) is a

formidable task, and a general answer may only be achiev-
able through numerical simulations. Hence, we now re-
strict our considerations to more manageable effective
qubit interactions. Let us first consider the case of

(a) (b)

FIG. 2. Example of states that contribute to the Sþ (a) and S�
(b) sums [see Eq. (15)]. The light (dark) circles indicate qubits in
þ (�) �x eigenstates. The dark line indicates the path of the
logical error �Z�, which is active in (b) and inactive in (a).
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Jrs ¼
�
J; r; s nearest neighbors;
0 otherwise;

(18)

where J is real. Such a case is of physical relevance. Any
measurement or operation on the plaquettes and stars can
introduce short-range correlated errors, regardless of the
presence of an environmental bath. For an Ohmic bath, it
corresponds to set v� to the order of the lattice spacing.

To show that an order-to-disorder transition indeed
exists, let us consider Eq. (17) with (18) in the absence
of the field h�w. Using Eq. (15), we obtain

zS�� ¼ hFxj
Y
j

Bhj
e
�
P
u�w

Juw�
x
u�

x
wY

j

Bhj
jFxi; (19)

where we have multiplied all spins in one of the sublattices
by�1 to make the model ferromagnetic. The products over
plaquettes introduce a sum over loops where the qubits at
these loops have negative eigenvalues (they are located at
the edges of the shaded regions in Fig. 2). Let us label these
qubits by a and b and use c and d to label qubits with
positive eigenvalues. Thus

zS�� ¼ e
�
P
a�b

Jab
e
�
P
c�d

Jcd
e
��
P
a�c

Jac
: (20)

At low temperatures, the first two factors in Eq. (20)
dominate. The third factor leads to excitations above the
ferromagnetic ground state whose energy is EF. Therefore,
we can go back Eq. (17) and write (for h�w ¼ 0)

X
S��

z� ¼ e�EF

 
1þ X

loops

e
�2�

P
a2loop;c=2loop

Jac
!
: (21)

Then, the energy cost of a loop with length ‘ is equal to
4J‘. The scaling of the number of loops with ‘ is well
known: N‘ ��‘, where � is the lattice connectivity con-
stant (e.g., � 	 2:638 for a square lattice) [18]. Hence, the
contribution of loops with length ‘ to

P
S��
z� goes as

�‘e�8�J‘. Clearly, a tradeoff between energy minimization
and ‘‘entropy’’ maximization takes place, and a phase
transition is expected at � ¼ �c, where

�c 	 ln�

8J
: (22)

For �>�c the system is in its ordered phase. Thus, we
expect the system to be sensible to the boundary magnetic
field direction, leading to F < 1 after the QEC period. In
particular, there is an obvious result to be stated. At the zero
temperature limit� ! 1, only the ‘‘ground state’’ contrib-
utes to the sums (i.e., only the T � sum survives). Hence,
jAj ¼ jBj and F ¼ 1

2 . Conversely, for �<�c (therefore

� < �c), a disordered phase develops, leading to the insen-
sibility to the boundary field and, therefore, F ¼ 1.

There are some roadblocks to studying the general case
represented by the correlator in Eq. (5). The first one is its
imaginary part. It is expected that any imaginary part

would have a negative effect on the fidelity (a conclusion
that can be reached by applying the Schwarz inequality).
Even if we disregard this imaginary part, the magnetic
model given by the real part of Eq. (5) may lead to
frustration. However, since the real part of the correlator
is a slow growing function, it is likely that the model is
controlled by boundary effects (as many other features of
topological systems are). Only through future numerical
work will it be possible do address these issues.
In order to gain some insight into the effects of long-

range correlations, we arbitrate a stripped version of the
Ohmic model. Consider the case where qubits on one of the
sublattices interact only with qubits on the other sublattice
through the real part of Eq. (5). This interaction preserves
the bipartite nature of the lattice, and we can again map it
onto a ferromagnetic model. We can repeat all steps of the
calculation done in the case with nearest-neighbor interac-
tions. Then, the energy cost of a loop with length ‘ is equal
to ðn� 2ÞJ‘, where n is the number of sites connected to
any lattice site through the interaction (i.e.,n is related to the
range of the interaction). The transition happens at

�c 	 ln�

nJ
: (23)

Note that �c explicitly depends on the interaction range. In
a strict sense, if all qubits in the lattice are in the ‘‘causality
cone’’ (and therefore participate in H ), there is never a
threshold. Although this could seem a dismal result, it also
shows us that a finite QEC period introduces an infrared
cutoff that creates a finite transition temperature. The small-
est of such transition temperatures corresponds to the case
of nearest neighbors, Eq. (18). Finally, we note that, under
the same assumptions that we used for the Ohmic bath,
super-Ohmic environments are local and therefore will
always yield a finite transition temperature. Conversely,
sub-Ohmic baths will require an infrared cutoff to yield a
finite threshold.
In conclusion, in this Letter we studied the fidelity of a

logical qubit encoded with the surface code after one
complete QEC period. We derived a nontrivial mapping
to a statistical mechanical problem and provided an ana-
lytical expression for the error threshold for some corre-
lated models. This mapping provides a promising route for
exploring fault tolerance of topological quantum error
correction codes in the presence of realistic environments.
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[16] D. López, E. R. Mucciolo, and E. Novais (to be published).
[17] When the initial state of the environment is a thermal state, a

thermal length 	T ¼ @v=kBT, added to the bosonic propa-
gator of Eq. (4), causes correlation functions to decay
exponentially over distances larger than	T . Such a situation
can be readily included in the effective model of Eq. (11).

[18] N. Madras and G. Slade, The Self-Avoiding Walk
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