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It is shown how it is possible to reconstruct the initial state of a one-dimensional system by sequentially

measuring two conjugate variables. The procedure relies on the quasicharacteristic function, the Fourier

transform of the Wigner quasiprobability. The proper characteristic function obtained by Fourier trans-

forming the experimentally accessible joint probability of observing ‘‘position’’ then ‘‘momentum’’ (or

vice versa) can be expressed as a product of the quasicharacteristic function of the two detectors and that

unknown of the quantum system. This allows state reconstruction through the sequence (1) data

collection, (2) Fourier transform, (3) algebraic operation, and (4) inverse Fourier transform. The strength

of the measurement should be intermediate for the procedure to work.
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Introduction.—Quantum state tomography, i.e., the
reconstruction of the unknown state of a quantum system,
is a fundamental problem. Its formulation can be traced
back to Pauli [1], who asked whether a measurement of
position on an ensemble of spinless systems prepared in a
pure state, complemented by a measurement of momentum
on a distinct ensemble, would allow us to reconstruct the
wave function. This question has been answered in the
negative [2,3]. Pure states are represented by a wave func-
tion and they are exceptional, in the sense that they form a
zero-measure subset of all possible states (which reflects in
the great care one has to take in preparing a pure state). The
most general state is mixed and usually described by a
density matrix, which is then the object to be reconstructed.
However, other equivalent descriptions of a mixed state
have been revealed to be more useful or significant than the
density matrix: the Wigner function [4], the Husimi Q
function [5], the Glauber-Sudarshan P function [6,7], the
recently reintroduced Dirac function [8], and the almost
forgotten Fourier transform of theWigner function, towhich
we refer as the Moyal M function [9]. Furthermore, para-
metric families including all of the above functions have
also been introduced [10,11].

Despite the quantum state being essential in describing a
system, successful quantum state reconstruction, dubbed
quantum state tomography because of an analogy with the
germane procedure of medical tomography, is relatively
recent [12]. The procedure relies on a proposal by Vogel
and Risken [13]. For a recent review of continuous-
variable quantum state tomography, the reader may refer
to Ref. [14].

Recently, a remarkable experiment [15] showed how it is
possible to determine the unknown pure state of a one-
dimensional quantum system by making a weak measure-
ment of the x variable followed by a strong measurement of
the conjugate variable p. A method, based on the Dirac
function, allowing us to lift the restriction to pure states
was proposed recently [16]. Here, we make an alternative

proposal, allowing the reconstruction of the Moyal M
function by a quick sequence of two measurements of
conjugate variables. In order for the procedure to work,
the strength of the measurement is not a fundamental issue,
provided it is not too strong nor too weak. The equations at
the basis of this proposal were reported, without derivation,
in Ref. [17], and they are an exact result, not a perturbative
expansion in the couplings. Furthermore, the procedure
proposed herein requires a fixed setup. This is to be con-
trasted to homodyne quantum state tomography, where a
different quadrature operator x� is measured for various

values of �. The efficiency of the two procedures is other-
wise comparable as in the sequential measurements one
has to evaluate a joint probability of two variables while in
the homodyne detection scheme a one-parameter family of
single variable probabilities is estimated.
Review of the measurement.—A linear measurement

relies on a specific bilinear coupling between a quantum
system and a probe. The interaction is assumed to be

bilinear in the observable X̂ belonging to the system and

in an observable �̂ belonging to the probe:

Hint ¼ ��@gðt� t0Þ�̂ X̂; (1)

where the function gðtÞ is strongly peaked around t ¼ 0

and has a unit integral. If the spectrum of X̂ is bounded,

then � may include a scale such that the eigenvalues of X̂,
indicated by X, are dimensionless and less than one [18]. A
detector with a continuous unbounded output is consid-

ered, so that �̂ has a conjugate operator Ĵ, satisfying

½�̂; Ĵ� ¼ i. Notice that �X and J are homogeneous. The

variable J represents eigenvalues of Ĵ and is the readout of
the detector, carrying information about the system. If the
probe is initially in a well-defined state with vanishing
variance in the readout variable J—i.e., its density matrix
is �ðJ; J0Þ ¼ �J;J0�ðJÞ—then the measurement is an ideal

strong one [we are indicating by �a;b the Kronecker delta

and by �ðaÞ the Dirac delta]. When this latter requirement
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is relaxed, the measurement is a linear ideal (nonstrong)
one. More precisely, let Xm be the typical spacing between

the eigenvalues of X̂; the measurement is weak when the
coupling constant satisfies �Xm � �, with �2 the initial
variance of the readout. One can distinguish two regimes:
the weak incoherent measurement, when � � �Xm � �,
with � the coherence scale of the detector (in the readout
basis) and the weak coherent measurement, when �Xm �
�. The former case bears little interest: Because of the large
variance, the readout of the detector in each individual trial
is not necessarily �X and can lie well outside the spectrum,
but after averaging over many trials, this effect washes out,
even if one postselects the system [19,20]. The latter case
was shown to produce a large average output after post-
selection [21,22] and to allow a joint measurement of
noncommuting observables with optimal noise in both
outputs [17,23]. It is interesting to note that a measurement
of a continuous variable (Xm ¼ 0) is always a weak coher-
ent measurement and thus may show quantum coherence
effects when followed by a postselection. In the following,
no specific assumptions about � are made, in order to have
general results. For simplicity, an instantaneous interaction
gðtÞ ¼ �ðtÞ is considered.

In lack of any sufficient reason to believe otherwise, the
probe and the system are assumed to be initially uncorre-
lated, so that their state immediately before the interaction

is R̂� ¼ �̂S � �̂i. We shall indicate by �iðJ; J0Þ ¼ hJj�̂ijJ0i
½�SðX; X0Þ ¼ hXj�̂SjX0i� the elements of the probe (sys-
tem) density matrix in the J (X) basis and by ��ið�;�0Þ ¼
h�j�̂ij�0i ½ ��SðK;K0Þ ¼ hKj�̂SjK0i� the elements in the
� (K) basis. The system-probe state immediately after
the interaction is

RS;fðX; X0; J; J0Þ ¼ �SðX; X0Þ�iðJ � �X; J0 � �X0Þ; (2)

where the equality exp½�iJ0�̂�jJi ¼ jJ � J0i was used.
After tracing out the system, the final state of the probe
following the interaction is

�fðJ; J0Þ ¼
Z

d�ðXÞ�SðX;XÞ�iðJ � �X; J0 � �XÞ; (3)

with �ðXÞ the spectral function describing the distribution
of eigenvalues [for a discrete spectrum, it is a combination
of Dirac �’s; for a continuous one, generally, it is d�ðXÞ ¼
dX]. The probability distribution �f of the readout J is

then

�fðJÞ ¼ �fðJ; JÞ ¼
Z

d�ðXÞ�SðX; XÞ�iðJ � �XÞ; (4)

with �i its initial distribution, and the corresponding
characteristic function is

Zfð�Þ �
Z

dJei�J�fðjÞ ¼ ZSð��ÞZið�Þ: (5)

Equation (5) reveals that the contributions of the detector
to the cumulants (logarithmic derivatives of Zf) are simply

additive. In particular, if the detector is initially prepared in
a Gaussian state, the cumulants of the output starting from
the third and higher reflect faithfully the cumulants of the
system, and only the second cumulant, which is the vari-
ance, includes a contribution from the detector, while the
first one, the average, has a contribution from the probe
only if this is biased, introducing a systematic error.
Moyal quasicharacteristic function.—The results will be

specialized to a one-dimensional system, so that X repre-
sents its coordinate and P ¼ @K its momentum. A useful
transform of the density matrix was introduced in Ref. [9]:
the Moyal quasicharacteristic function that is but the
Fourier transform ofWðK;XÞ, the Wigner quasiprobability
function [4,9], and is defined by

Mðx; kÞ ¼
Z

dXdKeikXþixKWðK;XÞ

¼
Z

dXeikX�

�
X þ x

2
; X � x

2

�

¼
Z

dKeiKx ��

�
K � k

2
; K þ k

2

�
: (6)

From the definition, Eq. (6), one realizes thatMðx; 0Þ is the
characteristic function for the probability ��fðKÞ ¼
hKj�̂jKi and Mð0; kÞ the characteristic function for the
probability �fðXÞ ¼ hXj�̂jXi. The generalization to a

higher dimension is straightforward. The Moyal quasichar-
acteristic function uniquely determines the density matrix
of a system and vice versa. For composite systems, the
marginal quasicharacteristic function of a subsytem is
obtained by putting the coordinates of the remaining sub-
systems to zero in the total function. Furthermore, the
Moyal function can be expressed as the average of the
non-Hermitian Weyl operator

Mðx; kÞ ¼ Trf�̂eixK̂þikX̂g; (7)

where, in the second line of Eq. (6), we used jX � x=2i ¼
� exp½iK̂x=2�jXi, exploited the cyclic property of the
trace, and applied the Campbell-Baker-Hausdorff formula.
The usefulness of this transform shows, e.g., when con-

sidering the measurement illustrated in the previous sec-
tion. The joint Moyal quasicharacteristic function for
system and probe in terms of the initial ones is simply

MS;fðx; k;�; jÞ ¼ MSðx; kþ ��ÞMið�; j� �xÞ: (8)

Results.—A system interacting in rapid sequence with
two probes, one coupling to X, the other to K, is consid-
ered, so that the interaction term is

Hint ¼ �@½�X�ðtþ "Þ�̂XX̂þ �K�ðt� "Þ�̂KK̂�: (9)

For " ! 0�, a measurement ofK is followed by a measure-
ment of X and vice versa for " ! 0þ. For " ¼ 0, the
measurement is a joint measurement in the manner of
Arthurs and Kelly [23] that we shall not study in detail
here and for which we refer the reader to our previous paper
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[17]. The initial state is assumed to be R̂� ¼ �̂S � �̂i, with
�̂i the density matrix of the two probes immediately before
the first interaction. The possibility that the probes are
initially in a correlated state is accounted for. The quasi-
characteristic function for the system and the two probes,
after some straightforward calculations [24], turns out to be

MS;fðx; k;�; jÞ ¼ Mi½�; j þ �ð2�0s þ �"��Þ�
� MSðs þ ��Þ; (10)

where for conciseness the two probes’ coordinates were
arranged in two column vectors � ¼ ð�K;�XÞ and j ¼
ðjK; jXÞ; s ¼ ðx; kÞ represents the symplectic coordinates;
we introduced the 2� 2 matrix � ¼ diagð�K; �XÞ, " 2
fþ;�; 0g; and

�þ ¼ 0 0

1 0

 !
; �� ¼ 0 �1

0 0

 !
; �0 ¼�þþ��

2
:

(11)

The case " ¼ þ corresponds to a measurement of X fol-
lowed by one ofK, " ¼ � to the opposite order, and " ¼ 0
to the joint measurement. Then, the (proper) characteristic
function, i.e., the Fourier transform of the joint probability
of observing J ¼ ðJK; JXÞ as the output, is obtained by
tracing out the system (k ¼ 0, x ¼ 0) and by putting
j ¼ 0, so that the experimentally accessible quantity

Zfð�Þ ¼
Z

dJKdJXe
iJ��fðJK; JXÞ (12)

is expressed in terms of the product of the targetMS and the
known Mi

Zfð�Þ ¼ MSð��ÞMið�;��"��Þ: (13)

Equations (10) and (13) are the main results of this Letter.
Since performing a joint measurement may be more diffi-
cult than a sequential one, we concentrate on the cases
" ¼ �, but in principle the joint measurement of position
and momentum allows as well the reconstruction of the
initial state.

If the probes are initially in a known state, then the
unknown initial state of the system can be evinced after
dividing the left-hand side of Eq. (13) by Mið�;�"Þ. This
can be done as far asMið�;�"Þ � 0. (A partial reconstruc-
tion of the state of the systemmay be satisfactory, however,
if, e.g., the function M is known on a dense set over R2 or
everywhere but on a zero-measure set. See Ref. [25] for a
detailed study.) The density matrix and the Wigner func-
tion are given, respectively, by

�

�
Xþ x

2
; X � x

2

�
¼
Z dk

2�

e�iXkZfðVsÞ
MiðVs;��"sÞ ; (14)

��

�
K � k

2
; K þ k

2

�
¼
Z dx

2�

e�iKxZfðVsÞ
MiðVs;��"sÞ ; (15)

WðK;XÞ ¼
Z dkdx

ð2�Þ2
e�iðKxþXkÞZfðVsÞ
MiðVs;��"sÞ ; (16)

with V ¼ ��1 ¼ diagð��1
K ; ��1

X Þ.
For an ideal strong measurement, the initial pointer den-

sity matrix would be �iðJ; J0Þ ¼ �JK;J
0
K
�JX;J

0
X
�ðJKÞ�ðJXÞ

and hence Mið�; jÞ ¼ �jK;0�jX;0, so that the procedure

would not work for " ¼ þ, �K � 0; " ¼ �, �X � 0; or
" ¼ 0, �K � 0 or �X � 0. It is therefore desirable not to
work in the strong regime, but at the same time one does
not need to keep the measurement in the weak regime. For
instance, the probes could be prepared in the mixed
Gaussian state

�iðJ; J0Þ ¼ expf�P
a½ �J2a=2�2

a þ j2a=2�
2
a�g

2��K�X

; (17)

with �Ja ¼ ðJa þ J0aÞ=2, ja ¼ ðJa � J0aÞ, and �a represent-

ing the coherence scale (that satisfies �a ¼ 1=~�a, where
~�a is the spread of the conjugate variable �a, so that, by
the uncertainty principle, �a � 2�a). Then,

Mið�; jÞ ¼ exp

�
�X

a

½�2
a�

2
a=2þ j2a=2�

2
a�
�
: (18)

The ideal strong case is obtained for �a ! 0, �a ! 0. In
the ideal weak coherent regime, �a ! 1, �a ! 1, the
state is Mið�; jÞ ! ��K;0��X;0 (which is but the strong

regime for when the � variables are used as a readout);
hence, Eq. (13) cannot determine MSð�K�K; �X�XÞ for
�K, �X � 0. Thus, the procedure suggested here works
with intermediate measurement strength.
In particular, when the detector is prepared in the state

given by Eq. (18), the Wigner function in terms of the
characteristic function of Eq. (12) is

WðK;XÞ ¼
Z dkdx

ð2�Þ2 ZfðVsÞ exp
�
�iðKxþ XkÞ

þ 1

2

��
�K

�K

�
2 þ

�ð1þ "Þ�X

2�X

�
2
�
x2

þ 1

2

��
�X

�X

�
2 þ

�ð1� "Þ�K

2�K

�
2
�
k2
�
: (19)

After substituting Eq. (12) into Eq. (19), one should be
careful not to exchange recklessly the order of integration;
otherwise, an artificial divergence appears. Furthermore,
for " ¼ 0 and �a ¼ 2�a, �X�K ¼ �X�K=4, Eqs. (19)
and (12) give a relation between WðK;XÞ and �fðJÞ that
is the formula relating the Wigner andQ functions, so that,
as is well known [26], the joint measurement of position
and momentum directly provides the Q function, provided
the detectors are properly prepared. By contrast, the gen-
eral procedure proposed here for measuring the Moyal M
function allows much more flexibility in terms of detector
preparation.
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Finally, an alternative application of Eq. (13) could
consist in obtaining the quasicharacteristic function of
the system for two fixed values of�K,�X and then varying
the coupling strengths �K, �X by keeping �K�X fixed in
order to reconstruct the state.

Estimates.—Let us summarize the steps needed to pro-
ceed to the quantum state tomography with the method
proposed here, which we will call quantum sequential
tomography (QST), while comparing them to the analogous
steps taken in quantum homodyne tomography (QHT).

In QST, first, a joint probability �fðJK; JXÞ is measured

by observing the J variables of the probe. Experimentally,
one should divide the JK, JX plane in a sufficient number of
small bins, each having an area�JX�JK determined by the
precision of the measurement. The measurement is
repeated a large number of times N, so that the resulting
histogram approximates the true probability within the
precision of the probes. Analogously, in QHT, the condi-
tional probability prðx�j�Þ is measured for different values

of � 2 ½0; ��. The binning is in the x, � strip and it is
determined by the precision with which x� can be mea-

sured and � controlled. Then, in QST, the Moyal function
MSðx; kÞ is obtained by making a double integral, precisely
a Fourier transform of the observed probability, which can
be done efficiently fast with the fast Fourier transform
algorithm, and by dividing finally by the known state of
the probes, which is computationally trivial. In QHT, the
Wigner function is obtained by making an inverse Radon
transform of prðx�j�Þ, which consists as well in a double

integral. Finally, the density matrix can be obtained by
making a single Fourier transform of the Moyal character-
istic function in QSTand of the Wigner function in QHT. A
further Fourier transform is needed to obtain the Wigner
function in QST and the Moyal function in QHT. Thus, we
can say that QST is more efficient than QHT for the
determination of the Moyal function, performs at least as
well as QHT for the density matrix, and is less efficient for
obtaining the Wigner function.

Finally, we estimate the relative uncertainty in the
Moyal function, MSðsÞ ¼ ZfðVsÞM�1

i ðVs;��"sÞ. As Mi

is fixed, it carries an uncertainty �Mið�; jÞ that depends on
how the state of the probes was determined. The finite
sampling introduces a statistical error in Zfð�Þ that can
be estimated according to standard statistical analysis as
�Z2 ¼ ½1� jZfð�Þj2�=N. There is also a numerical error

introduced by the integration 	num. Notice how these
uncertainties are present also in QHT. In conclusion, in
QST, the relative error can be estimated as

�jMSðsÞj2
jMSðsÞj2

	 1� jZfðVsÞj2
NjZfðVsÞj2

þ �jMiðVs;��"sÞj2
jMiðVs;��"sÞj2

þ 	2
numðVsÞ: (20)

Conclusions.—A procedure for determining an
unknown quantum state was proposed. Two measurements

of conjugate variables are made in quick sequence, the
joint probability is estimated from the collected data, it is
Fourier transformed to give the characteristic function, and
is then divided by the quasicharacteristic function of the
probes appearing in the right-hand side of Eq. (13). This
yields the Moyal quasicharacteristic function of the sys-
tem. The density matrix is obtained by Fourier transform-
ing the latter function. On the other hand, it is sufficient
to determine the Moyal function only in a neighborhood
of x ¼ 0, k ¼ 0 in order to estimate the cumulants.
Furthermore, the method proposed has the advantage of
requiring one fixed setup and does not require a sharp
measurement of either position or momentum; rather, it
thrives over the unsharpness of the measurement.
In perspective, it would be interesting to extend the

results to finite-dimensional Hilbert spaces, for which there
is a wide interest (see, e.g., the recent Ref. [27]), especially
in light of a recent generalization [28] of the concept of
conjugate variables.
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