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The quantum dynamics of a two-state system coupled to a bosonic reservoir with sub-Ohmic spectral

density is investigated for strong friction. Numerically exact path integral Monte Carlo methods reveal

that a changeover from coherent to incoherent relaxation does not occur for a broad class of spectral

distributions. In nonequilibrium coherences associated with substantial system-reservoir entanglement

exist even when strong dissipation forces the thermodynamic state of the system to behave almost

classically. This may be of relevance for current experiments with nanoscale devices.
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Introduction.—The impact of dissipative environments
on the dynamics of quantum systems has regained interest
due to the boost of activities to tailor atomic, molecular,
and solid state structures with growing complexity [1–3].
Common wisdom is that quantum coherence is inevitably
destroyed at sufficiently strong coupling to broadband
reservoirs. A paradigmatic model is a two-state system
interacting with a reservoir of bosonic degrees of freedom
(spin-boson model), which plays a fundamental role in a
variety of applications [4–6]. At low temperatures and
weak coupling, an initial nonequilibrium state evolves
via damped coherent oscillations, while at stronger dissi-
pation it displays an incoherent decay toward thermal
equilibrium. This is often understood as a quantum to
classical changeover. The question we pose here is whether
this picture always applies.

The spin-boson (SB) model has recently gained renewed
attention for reservoirs with sub-Ohmic mode distributions
Jsð!Þ / �!s where� denotes a coupling constant and 0<
s < 1. This class of reservoirs constitutes a dominant noise
source in solid state devices at low temperatures such as
superconducting qubits [7] and quantum dots [8] with the
spectral exponent s determined by the microscopic nature
of environmental degrees of freedom. It also appears in
the context of ultraslow glass dynamics [9], quantum im-
purity systems [10], and nanomechanical oscillators [11].
Advanced numerical techniques [12–15] have revealed
that at zero temperature the equilibrium state exhibits at
a critical coupling strength �c a quantum phase transition
(QPT) from a delocalized phase with tunneling between
the two spin orientations (weak friction) to a localized one
with almost classical behavior (stronger friction) [16].

The time evolution of the polarization toward these
asymptotic phases shows coherent oscillations or
classical-like monotonic decay. It has been argued that
with increasing friction the relaxation dynamics always
turns from coherent to incoherent [17]. Indeed, numerical
studies [18] confirmed this picture for reservoirs with
1=2 � s < 1, but the situation for 0< s < 1=2 remained
unclear, mainly because approaches used previously are

restricted to the regime of weak to moderate dissipation
[12,19]. The goal of this Letter is to attack this latter regime
via real-time path integral Monte Carlo (PIMC) techniques
[20,21], which also cover strong friction. We verify that
coherences persist in nonequilibrium for arbitrary coupling
strength to a heat bath even when the thermal state is
essentially classical. Our results shed new light on our
understanding of the quantum–classical crossover and
may be accessible experimentally.
Reduced dynamics.—We consider a symmetric SB

model

HSB ¼ � @�

2
�x � 1

2
�zE þX

�

@!�b
y
�b� (1)

with a two-state system (TSS) that interacts bilinearly
with a harmonic reservoir HB via the bath force

E ¼ P
���ðb� þ by�Þ. All relevant observables are

obtained from the reduced density operator �ðtÞ ¼
TrBfexpð�iHSBt=@ÞWð0Þ expðiHSBt=@Þg, where the initial
state has the form

Wð0Þ ¼ �Sð0Þe��ðHB�EÞ=ZB: (2)

Here, according to typical experimental situations [5] the
bath distribution is equilibrated to the initial state of the
TSS, which is �Sð0Þ ¼ j þ 1ihþ1j (the eigenstates of �z

are j � 1i with the bare tunneling amplitude � between
them); the partition function is denoted by ZB. We are
interested in the real-time dynamics of the observables

P�ðtÞ � h��ðtÞi ¼ Trf���ðtÞg; � ¼ x; y; z;

where Pz describes the population difference (polarization)
and Px the coherence between the sites j � 1i.
A nonperturbative treatment is obtained within the

path integral formulation. The P� is expressed along a
Keldysh contour with forward � and backward �0
paths [5]. The impact of the environment appears as an
influence functional introducing arbitrarily long-ranged
interactions between the paths. Switching to �=� ¼ ��
�0 one arrives at
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P�ðtÞ ¼
Z

D½��D½��A�e
��½�;�� (3)

with the contributionA� in the absence of dissipation and
the influence functional

�½�; �� ¼
Z t

0
du

Z u

0
dv _�ðuÞ½Q0ðu� vÞ _�ðvÞ

þ iQ00ðu� vÞ _�ðvÞ�:
According to Eq. (2) one sums over all paths with
�ð0Þ ¼ 1, �ð0Þ ¼ 0 and j�ðtÞj ¼ 1, �ðtÞ ¼ 0 for Pz and
�ðtÞ ¼ 0, j�ðtÞj ¼ 1 for Px, respectively. The kernel
Q ¼ Q0 þ iQ00 is related to the bath correlation
€QðtÞ ¼ hEðtÞEð0Þi=@2 and is thus completely determined
by the spectral function Jð!Þ ¼ 	

P
��

2
�
ð!�!�Þ. For

sub-Ohmic spectral distributions

Jsð!Þ ¼ 2	�!1�s
c !se�!=!c ; 0< s < 1; (4)

one has at zero temperature [5]

Q0ðtÞ ¼ 2��ðs� 1Þ½1� ð1þ i!ctÞ1�s�:
In the Ohmic case s ! 1 the coupling � coincides with the
Kondo parameter K. The cutoff !c corresponds, e.g., to a
Debye frequency [5] or to a parameter of an electromag-
netic environment [8].

A direct evaluation of Eq. (3) is extremely challenging
due to the retardation in the influence functional, which
grows with decreasing temperature. In this situation PIMC
methods are a very powerful means to explore the non-
perturbative range including strong coupling [20,21]. Here,
we extend this formulation to simulate not only popula-
tions Pz but also coherences Px (see Ref. [22]).

Population dynamics.—The dynamics of PzðtÞ directly
displays the impact of decoherence as the bare two-state
system is completely quantum and has no classical limit.
The expectation is that finite friction induces damped
oscillations on a transient time scale of the form PzðtÞ �
e��t cosð�tÞ. As long as � � 0 the system dynamics is
said to be coherent; otherwise it is incoherent. For
vanishing friction PzðtÞ ¼ cosð�tÞ, while finite coupling
leads asymptotically to a thermal equilibrium with
Pzðt ! 1Þ ! 0 (delocalized) or Pzðt!1Þ�0 (localized)
as shown previously [12,13].

To analyze the dynamical features in detail (cf. Fig. 1),
we consider the case of zero temperature and!c � �, and
start in Fig. 2 with PzðtÞ in the range 1=2 � s � 1 of
spectral exponents. For fixed s, PIMC simulations display
with increasing coupling � a changeover from coherent to
incoherent motion, i.e., from damped oscillations to over-
damped decay [18]. It appears in that domain in parameter
space where the thermal state is delocalized (Fig. 1).
Accordingly, the critical coupling strength for the
coherent-incoherent turnover �CIðsÞ is always smaller
than the critical coupling �cðsÞ for the QPT. In limiting
cases one finds �cðs ¼ 0:5Þ � �CIðs ¼ 0:5Þ, while for an

Ohmic bath (s ¼ 1) the known result is confirmed
�cðs ¼ 1Þ � 1>�CIðs ¼ 1Þ � 0:5.
In contrast, simulations in the range 0< s < 1=2 reveal

a different scenario. Oscillatory patterns survive even for
coupling strengths far beyond the critical coupling �cðsÞ
for the QPT (see Figs. 1 and 3). PIMC data up to ultra-
strong couplings � ¼ 30�c do not show a changeover to a
classical-like decay for exponents up to s ¼ 0:49. The
oscillation frequencies �sð�Þ in PzðtÞ increase with
increasing coupling and exhibit a scale invariance accord-
ing to�sð��Þ ¼ ��sð�Þ (inset Fig. 3 and Ref. [22]). Two
observations are intriguing: (i) even in the regime where
friction is so strong that the thermal state resides in the
classical phase [13,15] (spin almost frozen with Pz � 1 �
Px), the nonequilibrium dynamics of the TSS preserves
quantum coherence and (ii) the domain where these
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FIG. 1 (color online). Domains of coherent (white) and inco-
herent (shaded) dynamics of the SB model for a sub-Ohmic
environment (4) at zero temperature. Above (below) the solid
line �cðsÞ the system asymptotically reaches a thermal
equilibrium that is localized (delocalized) [27]. A coherent-
incoherent changeover only occurs along the dashed line �CIðsÞ
(2). Dotted lines refer to results in Fig. 2 (left) and Fig. 3 (right),
respectively.
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FIG. 2 (color online). Dynamics of PzðtÞ at T ¼ 0 and
�=!c ¼ 0:1 according to PIMC calculations for s ¼ 0:75 and
couplings � with �c � 0:3>�CI � 0:22 (purple line). Blue
(red) lines refer to coherent �< �CI (incoherent �> �CI)
dynamics (cf. Fig. 1). Statistical errors are of the size of the
symbols.
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coherences survive covers a broad range of spectral distri-
butions up to exponents s close to s ¼ 0:5 (see Fig. 1).

To gain analytical insight, an approximate treatment is
provided by the noninteracting blip approximation (NIBA)
[5]. The starting points are exact equations of motion that
can be derived from (3) in Ref. [5], i.e.,

_P zðtÞ ¼ �
Z t

0
duKzðt� uÞPzðuÞ: (5)

Within NIBA the kernel is evaluated as Kz � KN;z where

KN;zðtÞ ¼ �2e�Q0ðtÞ cos½Q00ðtÞ�: (6)

Let us now analyze how incoherent decay for PzðtÞ may
appear out of Eq. (5). In KN;zðtÞ the correlation Q0

0ðtÞ
induces damping while Q00

0 ðtÞ is responsible for oscillatory
motion. Both functions are positive and monotonically
increase in time leading to damped oscillations in
KN;zðtÞ. If this damping is sufficiently strong on the time

scale of the bare dynamics 1=�, i.e., if the kernel is
sufficiently short ranged in time, the population PzðtÞ
decays incoherently. We estimate this to be the case if at
the first zero t ¼ t	 of the kernel where Q00

0 ðt	Þ ¼ 	=2, the
damping obeys Q0

0ðt	Þ> 1. One finds this condition to be

fulfilled only for s > 1=2. There, the borderline between
the two dynamical regimes is determined by that coupling
strength at which t	 ¼ 1=�, i.e.,

�CIðsÞ � 	

4j�ðs� 1Þj cosðs	=2Þ
�
�

!c

�
1�s

: (7)

This expression includes the known Ohmic result
�CIðs ¼ 1Þ ¼ 0:5 and captures accurately numerical data
from our PIMC calculations. Further, it confirms our nu-
merical finding that �cðsÞ
�CIðsÞ (see Fig. 1). For fixed
s > 0:5, increasing friction first destroys coherent dynam-
ics before it also asymptotically induces localization. In
contrast, for spectral functions 0< s < 0:5, a coherent-
incoherent changeover never appears.

In principle, the oscillation frequency�s and the damp-
ing �s of PzðtÞ can be extracted as complex-valued poles

from the Laplace transform of Eq. (5), i.e., P̂ð�Þ ¼ 1=½�þ
K̂N;zð�Þ�. However, specific results can be found only for

(i) s ¼ 0:5 and (ii) s � 1 (for details see Ref. [22]).

(i) In the regime � � ffiffiffiffiffiffiffiffiffiffiffiffiffi
�=!c

p
, the poles are given by

��
1=2 ¼ �i�1=2 � �1=2 with frequency �1=2ð�Þ �

�� �1=2 and decay rate �1=2ð�Þ ¼ ��	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!c=4�

p
. There

is no pole with � ¼ 0meaning that Pzðt ! 1Þ ! 0 (deloc-
alization). Apparently, the oscillation frequency decreases
with growing coupling �while the damping rate increases.
This indicates a changeover from coherent motion with
�1=2=�1=2 > 1 to incoherent motion with �1=2 ¼ 0 for

larger �.
(ii) In the domain s � 1 one may use the expansion

Q0ðtÞ � �st exp½i	ð1� sÞ=2� with coefficient �s ¼R1
0 d!Jsð!Þ=ð	!Þ ¼ 2�!cj�ðs� 1Þj. Then, P̂ð�Þ has

one pole at � ¼ 0 so that PzðtÞ relaxes toward an asymp-
totic limit Pzðt ! 1Þ> 0 (localization). The other two
poles are complex conjugates where the imaginary part
describes oscillations in PzðtÞ with frequency

�sð�Þ � �s sin½ð1� sÞ	=2� � 2�!c

s
: (8)

The real part corresponds to a damping rate �sð�Þ � s�s

which saturates for s ! 0 at �0 ¼ 2�!c. Hence, for fixed
s, both rate and frequency increase with increasing � such
that the dynamics of the TSS is always underdamped
�s=�s ¼ 1=s � 1. Quantum coherent dynamics persists
up to arbitrarily large couplings in accordance with the
numerical data (cf. Fig. 3). Further, the above result con-
firms the scaling property of �sð�Þ found already in the
PIMC calculations. Note that details of the cutoff proce-
dure may enter via�s only. Because it is determined by the
low frequency behavior of Jð!Þ, the dynamics is indepen-
dent of the cutoff scheme for !c � � as also seen in the
PIMC calculations (not shown). Similarly, the bare fre-
quency of the TSS has disappeared. It only governs the
dynamics for ultrashort times t � 1=!c before reservoir
modes can respond. There, the bare Schrödinger dynamics
predicts the universal quadratic time dependence PzðtÞ �
1��2t2=2. After this initial delocalization process, the
reservoir tends to prevail with the low frequency modes in
E [see Eq. (1)] acting on the TSS effectively as a static
energy bias of strength �@�s according to the coupling
��zE=2. This is in agreement with the observation that
@�s corresponds to the energy needed to reorganize the
reservoir once the spin has flipped [23].
Coherences and entanglement.—To further verify the

quantum nature of the oscillatory population dynamics,
we also monitor PxðtÞ (Fig. 4). Indeed, one observes sub-
stantial quantum nonlocality, which also suggests substan-
tial entanglement between the TSS and its surroundings. At
T ¼ 0 this entanglement can be extracted from the von
Neumann entropy SðtÞ=kB ¼ �wþ lnðwþÞ � w� lnðw�Þ
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FIG. 3 (color online). Same as in Fig. 2 but for s ¼ 0:25 and
values �> �c � 0:022. The inset shows a blowup for very large
couplings.
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with w� ¼ 1
2 ½1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PxðtÞ2 þ PyðtÞ2 þ PzðtÞ2

q
� (cf. Fig. 4).

PIMC simulations reveal strong entanglement well into the
regime �> �c (localization) on time scales where oscil-
latory patterns in PzðtÞ and PxðtÞ occur. For longer times
and stronger coupling, entanglement decays montonically.
This is in agreement with previous findings in thermal
equilibrium: entanglement tends to zero in the localized
phase for couplings somewhat above �c [15].

Initial preparation.—Persistence of coherence is associ-
ated with a strong dependence on initial preparations. Of
particular interest for experimental realizations are prepa-
rations, where the reservoir is out of equilibrium with
respect to the initial state of the TSS. This means that in
Eq. (2) one must replace E ! E with  � 1. The cloud
of bath modes is shifted to the left (right) for < 1
(> 1) with  ¼ 0 being the equilibrium orientation of
the bare bath. According to Fig. 5, with decreasing  the
effective oscillations frequency of the TSS decreases while
at the same time the initial loss in population increases.
This behavior can be understood from the fact that this
preparation can equivalently be described by a time depen-
dent bias �ðtÞ ¼ ð1�Þ _Q00ðtÞ of the TSS, i.e., by an

additional term @�ðtÞ�z=2 in Eq. (1) [24]. In particular,

for reservoirs with spectral exponents s � 1 one has
_Q00ðtÞ � �s so that � � ð1�Þ�s becomes static.

Effectively, this bias adds to the bias induced by the slug-
gish modes in the system-reservoir coupling �E�z=2 [see
below Eq. (8)] to produce a net bias �tot � ��s. As a
result the TSS regains bare dynamical features for  ! 0.
This analysis can now be extended to other preparations of
the TSS alone (superpositions of j � 1i) which, however,
display qualitatively a similar picture. The same is true for
asymmetric TSS and/or finite temperatures as long as
corresponding energy scales do not exceed the bare tun-
neling amplitude. Results will be shown elsewhere.

Summary.—We have shown that in nonequilibrium co-
herent dynamics can persist for ultrastrong coupling to a
broadband reservoir. For a SB model in the sub-Ohmic

regime, stronger friction does not induce incoherent re-
laxation for spectral exponents 0< s < 1=2 even when the
thermal equilibrium is almost classical. These findings
shed light on our understanding of decoherence in open
quantum systems and are thus of relevance for current
experiments in nanoscale structures. The case s ¼ 1=2
can be realized through a charge qubit subject to electro-
magnetic noise [8], while recent progress in engineering
local environments for Cooper pair boxes may allow us to
study cases with s < 1=2 [25]. Reservoirs with s ! 0 have
been proposed as models for 1=f noise in superconducting
circuits where temperature enters as an effective parameter
[7]. While in this latter case details need to be investigated,
a promising alternative is trapped ion systems as shown in
Ref. [26].
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