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Leitner, Phys. Rev. 112, 273 (1958).
Except when specified otherwise, components of vec-

tors and tensors refer to any right-handed set of Carte-
sian coordinate axes chosen without reference to the Y*
decay.

Details of the derivation are available in a University
of California, Los Angeles, California, preprint (un-
published). Using helicity states for the decay prod-
ucts, these results are obtained using standard methods
[see, e.g. , reference 3 and M. Jacob and G. C. Kick,
Ann. Phys. (N. Y. ) 7, 404 (1959)]. %e th~ S. Ber-

man for pointing this out.
SIf the Y~ state is formed from all Y~ produced with

momentum u' and u is the incident momentum, the tr M

are polynomials in the components of u and u'. see,
e.g. , H. H. Joos, Forstchr. Physik 10, 65 (1962).

~OUsing (20) and (21), one may evaluate the tL when

p is known; for an example, see R. K. Adair, Phys.
Rev. 100, 1540 (1955). In the Adair analysis, only the
tLM with M =0 and L even are different from zero. If
parity is violated in the decay, a unique function EP k is
obtained for each J [see Eq. (12')].
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In quantum field theory it is usually considered
that the magnitudes of the coupling constants can
assume any value irrespective of the particle
mass. In the case of a bound state in the nonrela-
tivistic theory, however, Heisenberg' showed
that the coupling constant is expressed through
the constant in the asymptotics of the wave func-
tion of this state. Subsequently in a number of
reports' ' it was shown that the physical (renor-
malized) coupling constants are bounded above by
definite boundaries which depend on the particle
mass, In these reports, however, the considera-
tions either had resort to models or' were based
on the assumption that the interaction of the ele-
mentary particles is characterized by an effective
radius, which does not increase with the increase
of the coupling constant. We will show here that
the restrictions on the magnitudes of the coupling
constants at any given mass follow from the gen-
eral principles of quantum field theory with no
additional assumption. (A detailed report appears
elsewhere. ')

Our assumption will be based on the represen-
tation of Green's function in the form of the Leh-
man-KKlldn" expansion; i.e. , we will consider
that all the conditions under which this expansion
takes place are fulfilled.

We will first consider a case of interaction of
three boson fields with zero spin g, 5, and c, and
we will obtain the restriction on the magnitude of
the coupling constant g' of these three fields. We
will consider that particles a, 6, and c are stable,
ynz & pn~ & inc', we will assume also that 5 and c
are the closest particles (with regard to total
mass) to particle a. Based on the Lehman-KKlldn

expansion of the Green's function of boson g in
our previous work, ' we obtain the following in-
equality restricting the possible magnitude of the
renormalized coupling constant g':

1 g — @&].,
4m (m +m )'

b c

C =2(m +m )' l I'(K') i' q(K')dK'. (1)
h c (m +m )2(K'-m ')'

c a

Here I (K ) = I (K mh mc ) is the vertex part for
a, f, c particle interaction; q(K') = (2K) '[K'- (mh
+mc)']"'[K'- (mf, - mc)']"' is the momentum of b

and c particles in the center of mass. In order
to obtain from inequality (1) definite restriction
for g', the magnitude of 4 at given masses rn~,
m~, mc must be bounded below.

Let us find the minimum in the class of functions
I'(K') having the following characteristics:

(I) I'(K') is a holomorphic function of K' in the
complex g' plane with a cut along the real axis,
extending from point K' = (m& +m )' to infinity.
To the left of the point K'= (mt, +mc)' on the real
axis, I'(K') is real.

(II) The rate of increase of 1 (K') as K' tends to
~ is not more rapid than an exponential increase.

(III) At the point K'=ma', I'(ma') =1.
We assume that I'(K') has no poles in the com-

plex plane. In principle, the poles of I'(K') could
b~ situated on the real axis in the interval rn~'
& K'& (mt, +mc)' at point K' at which the Green's
function D(K') becomes zero, and I"(K')D(K')
—const when K'- K„'. [The latter case follows
from, for example, Schwinger's equation for the
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Green's function D(«'). ] These poles of I"(«')
correspond to bound states of the particles b and

c, and because of the term g'r'(«')D(«'), will
lead to poles in the scattering amplitudes of par-
ticles b and c. [This takes place, for example,
in the theory of superconductivity where the pole
of r(«') corresponds to the bound state of Cooper's
pair. ] Thus the result of our assumption is that
there are no particles with masses intermediate
between ma and mb+m~.

The characteristics (I)-(III}will be fulfilled if
we write the dispersion relation for I"(«'):

1"(«')

In order to find the minimum of the integral

c= ~r( )~'dx(x- n)' (3)

in a complex x plane, conformal transformation
is carried out:

z =-[(x-1) '- i(1 —n)"']/[(x —1)"'+i(1-n)"'], (4)

converting the two sides of the cut along the real
axis from 1 to infinity into a unit circle. All the
complex x plane with the cut passes into the inner
part of the unit circle and the point x-e passes
into the center of the circle. The integral (3) is
transformed into

2 K -K -ZO K -'m
mb+mc Q

(2)
4 =— f(e) tr(z) We, z =e] i8

2m -r

with an arbitrary ImI'(«'). [It can be shown' that
one subtraction in (2) is sufficient. ] Then substi-
tuting (2) in (1), one can find the minimum of the
functional 4 [r(«')] in the class of functions r(«')
which is of interest to us, by varying 4 over
Imr(«'). For Iml («') we obtain Fredholm's inte-
gral equation of the second kind, which has only
one solution. Knowing ImI" («'), one can find the
function r(«') minimizing 4 and the value of dmin.
Unfortunately, the resulting integral equation is
rather complex, and in a generalized case it can
be solved only numerically on an electronic com-
puter (see reference 9).

The minimum value of 4 can be also obtained
by an analytical method. I,et us introduce
the notations

x = «'/(m + m ) ',
b c

n =m '/(m +m )',
a b c

« = (m - m )'/(m + m )'.
b c b c

I'(z) is an analytic function inside the unit circle
and I (0) =1. The solution of the problem of find-
ing the minimum of integral (5) over the class of
functions I'(z) which are analytic in a circle when
I"(0) = 1 is carried out by the expansion of I'(z)
over the system of polynomials which are orthog-
onal on a unit circle with the weight f(e). The
answer is as follows:

4 . = exp — lnf(e)de
mLn 27

(6)

After elementary integration, we obtain

=~tv[(1- «)~'+ (1- n)v']/(I - n)"'[1+ (1- n)~']'
min 4

Thus in the case of interaction of three boson
fields, the coupling constant g' is restricted by
the inequality

f(e)=v(1-n) v u[1-~+ (1-n)u] /[1+(1-n}u](1+u),

u = tan'(';e).

b c a b c b c a
m +m -m m +m + m +m -m

g &16
2(m m )~'+[(m +m )'-m ']"'

b c b c a

In the nonrelativistic case when the binding energy
a = mf, + mc - mu «m, (8) goes over into the ex-
pression obtained previously' (u is the reduced
mass of particles b and c}:

&g16 m(a/2 p, )~'.
a

The fact that at low binding energies g' is pro-
portional to &6 has been noted in a number of re-
ports' 4~' in which the considerations were based
on the nonrelativistic theory, and it was assumed
that the range of nuclear forces equaled zero.
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2&py - p2 - 0~ (10)

and we will assume that G(p) =pf&(p ) +f2(P ).
Thenf, ' will be an R function, and proceeding
in the same manner as in reference 7, we mill
obtain

J pg(k ) dK

(m „m )2 If (~')P (~'-m ')'
c a

Increasing the inequality, we will calculate in p,
only the contribution of the tmo-particle sta. tes
b+c. Then p, will be expressed by the vertex
part which will have the form

%ith these assumptions the authors of references
1-4 and 6 arrived at limit on g' tmo times smaller
than ours (this restriction is obtained if we as-
sume that I'=1). In reference 4 it was noted that
the calculation of the finiteness of the range of
nuclear forces diminishes the restriction on the
coupling constant g'. From our discussion it
folloms that because of the finiteness of the range
of nuclear forces, the magnitude of g' can increase
not more than two times. In the case of a deuter-
on (a =deuteron, b and c= neutron and proton),
from experimental data on neutron-proton scatter-
ing g'= 12mD'(6/2p)"'; i.e. , for a deuteron the
estimate (9) is very close to the actual value.

Let us now consider a case mhen a and b are
fermions with spin ';, and c is a boson mith spin
zero. Let us write the Lehman-KalMn represen-
tation of the Green's function for fermion a.

(
1 (p+ ~)p, (rc') - p, (~')„,P'™ (m +m ) i& -P i5

a b c

(the upper sign refers to the scalar case, the
lower sign to pseudoscalar case}. In accordance
with the definition of physical charge, the follow-
ing condition mill exist:

r (m ')+m I (m ') =1.
a a 2 a

We will assume that the functions I",(K') and r2(K )
have the same analytical characteristics (I) and

(II) as the function r(~') in the boson ca,se. Spe-
cifically, r, (z') and r, (~') do not have poles in

the complex z' plane and, consequently, the
Green's function of fermion a has no zeros, con-
nected with the poles of I", and I',. Also me will
assume here that the Green's function f,(p'), in
general, has no zeros. (It can be shown"' that
the rejection of this assumption mill not change
the deduction regarding the restriction of the con-
stant g'. ) Then the minimum of the functional 4
exists and can be found by the same method as in
the boson case. In finding the minimum it is
convenient to assume that

2m(m +m)

5 c

It follows from (15) that at point z' = mn' the func-
tions F,(x') and F,(~') satisfy the conditions

F, (m ')=
a 2(m +m )'

b c

r (p)= r, (p') +pr, (p'),

if boson e is scalar and

(12)
[(m '+m '-m ')/2m j~m

b c

if boson c is pseudoscalar. After substituting the
corresponding expression for p, (z'), the inequality
(11) will have the form (g'/2w)C & 1:

4= dK' q(K')

(m +m }2(K m ) K Ka b a

x(IF, ( )~K+F (K')m I'[(~+m ) -m j2 a 5 c

+ IF,(~')~-F, (/c')m I'[(K+m ) m j), (I&)
C

F = (f I +f I'2)/2f, F2 = (f I' p +f2I' )/2fim

From the regularity requirements on F,(x') at
the point ~' = -m~'+ mc', there follows another
condition for the functions g, and P,:

+F (-m '+m ')+F (-m '+m ') =0.
1 b c 2 5 c

Just as in the case for bosons, the minimum of
the functional @ ean be found by writing down the
dispersion relations for ~, and g„substituting
them in (14), and minimizing over ImF, and ImF,
in conditions (16) and (16'). The integral equa-
tions obtained can be solved numerically. In
order to obtain an analytic expression for 4 min,
let us carry out the conformal transformation (4).
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Then

[1-Z+ (1 —n)u P'
[1+(1- n)u]'[1+x"'+ (1- n)u]'

[1 —~ + (1 —n)u]v'

[1+(1- n)u][1+a"'+ (1- n)u]'

(1'7)

stant g' cannot be greater than a certain value

gmaz' signifies that the amplitudes of quantum

field theory, considered as functions of g', have
a singularity point when g'=gmaz', and when g'
&gmaz' theory will be physically contradictory.
Therefore all attempts at solving the problems
by using an expansion in powers of 1/g' at given
masses (strong coupling theory) have very little
chance for success.

The authors are grateful to V. Ya. Fainberg,
E. S. Fradkin, V. N. Gribov, A. P. Rudik, and

K. A. Ter-Martirosyan for valuable discussions.
%e are grateful also to N. N. Neiman for suggest-
ing the analytical method of determining the mini-
mum of functional 4.

Let us expand the functions F,(g) and F,(z) in the
unit circle Iz j& 1 over the polynomial systems
g„'" and (I)„")(s)orthogonal in a unit circle with

weights f, (8) and f,(8), respectively: F,(s)
=pa„P„")(z);F,(z) =Qt „(t„")(z). Substituting
these expansions in (17) and finding the minimum
in (17) under the conditions (16) and (16'), after
certain calculations with the aid of formulas for
the sums of orthogonal polynomials from refer-
ence 12 we find

(v + w)' nv (1*~n)'(4 ~ 'n)'
4 2+

min 16 (1+v)'(v+y) (1+v)' v(v+w)'

+2 (u +y)'(v +y)'
(n+A)'(w+2y +y')

1+4& Uy()+1)
)

'
( )X kQ

v+w v+w (v+y)(1+v)

where v = (1-d)v', w = (1 - a)v', and y = (1 + t"')v'.
In the most interesting case, which is the inter-
action of pions with nucleons, by substituting in
(18) the numerical mass values we have 4 min
= 0. 0245 and g&&

' & 85. For the constant for
2Am interaction for opposite parities of Z and A,
we obtain g&A„'& 3.2 (a numerical solution of the
integral equations gives, naturally, the same re-
sults).
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In our case f2(8) and f2(0) are even functions of 0;
therefore the coefficients of the polynomials gz'"(z) and

tI„~(z} are real and owing to the first property of I'(z)
&„and &„will also be real.


