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Although our knowledge of spin-orbit splitting
in the band structure of crystals is by now rather
extensive, ' ~ the consequences of the closely re-
lated relativistic mass-velocity and Darwin (s-
shift) corrections in this context have received
scant attention. ' Since the direct solution of a
relativistic crystal wave equation is a formid-
able undertaking, few attempts have been made
in this direction. Recently, a perturbation treat-
ment has been used to determine the relativistic
corrections for PbTe. ' In this Letter, we shall
attempt to estimate the magnitude of these cor-
rections in a. wide variety of crystals in a man-
ner which avoids detailed crystal calculations.
Our objective is to place the question of the im-
portance of these corrections in specific applica-
tions on a semiquantitative basis.

By applying two successive canonical trans-
formations of the Foldy-Wouthuysen (F-W) type, '
using the fine structure constant, e, as the ex-
pansion parameter (in contrast to F-W), the
four-component Dirac Hamiltonian can be re-
duced to a four-component Hamiltonian in which
positive and negative energy states are complete-
ly decoupled to order n'. This leads to the fol-
lowing two-component Hamiltonian for the posi-
tive-energy states:

a =-v'+ V(r) —( n')V4+ (qn')V'V(r)

-i(,'n')a [v-V(r) xv],
where energies are expressed in Rydbergs and
distances in Bohr units, and where the electron
rest energy, 2/n', has been dropped. The non-
relativistic Hamiltonian Bo is represented by the
first and second terms, the relativistic mass-
velocity correction by the third term, the rela-
tivistic Darwin correction by the fourth term,
and the spin-orbit interaction by the final term.
In a representation correct to order e', the
above mass-velocity term is equivalent to
-(-,'n')[Eo —V(r)]', where Fo is the nonrelativistic
energy associated with B„and the above Dar-
win term is equivalent to -(-,'n')VV(r) ~ V.

In a book just published, relativistic and spin-
orbit coupling corrections for free atoms ob-
tained by a first-order perturbation treatment
are reported. Starting with this information,

and applying three successive adjustments
(A, B,C), we shall proceed to obtain estimates
of these corrections for atoms embedded in
crystals. The idea of estimating spin-orbit
splittings in crystals from a knowledge of these
splittings in the constituent free atoms was in-
troduced by Kane. ~ This procedure has proved
quite successful. ' Our approach is an exten-
sion of this procedure which treats relativistic
corrections on the same basis as spin-orbit
splitting.

Adjustment A compensates for inadequacies
in the perturbation treatment of the free atom
corrections. Introducing an adjustment factor
A(Z) for each atom Z, we can establish its value
for certain key atoms by comparing experimental'
and calculated' spin-orbit splittings (6) for the
outermost P orbitals in normal neutral atoms
having the configurations p' 'P or p''P (atoms
in columns IIIA and VIIA). Since these atoms
have either one electron or one hole in the out-
ermost P shell, the correspondence between ex-
perimental and calculated spin-orbit splittings
is more clear-eut here than it is for atoms having
more complicated configurations. We evaluate
A(Z) for these atoms from the definition: A(Z)

P(Z)/&atom a (Z). Using these values
of A(Z) as standards, we can obtain values of
A(Z) for neighboring atoms in the periodic table
by linear interpolation or extrapolation. Since
a study of relativistic and spin-orbit coupling
corrections in the outermost orbitals of neutral
and singly ionized atoms suggested that these
corrections depend strongly on Z and only slight-
ly on the state of ionization, we shall use only
neutral atoms as our standards.

It is now assumed, admittedly arbitrarily,
that the value of A(Z) as determined above can
be used to adjust all the relativistic and spin-
orbit corrections (X) associated with the outer-
most s and p orbitals for atom Z on the same
basis. By this we mean that any adjusted cor-
rection for atom Z is given by Xato ad&(Z)

=A(Z)Xatomcalc(Z), where Xatomca c(Z) is
taken from reference 8. The critical assump-
tion here, of course, is that corrections for s
and p orbitals actually scale in the same man-
ner. [In passing, we note that the average devi-

541



VOLUME 11,NUMBER 12 PHYSICAL RKVIKW LKTTKRS 15 DECEMBER 1963

ation of A(Z) from unity for all the atoms con-
sidered was about 0.2. ]

Let us now direct our attention to the important
and particularly simple class of s-like conduction-
band states and p-like valence-band states at k
= [000] in diamond-type [s: I', i; P: I'»I] and
sphalerite-type [s: I;; p: I'»] crystals. Since
the crystal wave functions for these states re-

semble the corresponding ns or np atomic or-
bitals in the core regions (which provide the
principal contributions to the spin-orbit and
relativistic correction matrix elements), we
can make the passage from free atoms to crys-
tals by introducing two further adjustment factors,
B(Z) and C. Both of these factors account for
wave-function renormalization effects. ' For

Table I. Relativistic and spin-orbit coupling corrections in electron volts. The following quantities include the
adjustments A and 8 described in the text. The adjustment C is not included here. bp and GEE are the spin-
orbit splitting and mass-velocity correction for the outermost P orbital. 6Es and bEp are the mass-velocity
and Darwin corrections for the outermost s orbital. 6Es =BE + 6Es r . PEP = 6Ep + 36'.

vel"p vel
s

Dar
s

Li 3
Be 4
B 5
C 6
N 7

08
F 9
Ne 10

Na 11
Mg 12
Al 13
Si 14
P 15
S 16
Cl 17
Ar 18

Cu 29
Zn 30
Ga 31
Ge 32
As 33
Se 34
Br 35
Kr 36

Ag 47
Cd 48
In 49
Sn 50
Sb 51
Te 52
I 53
Xe 54

Au 79
Hg 80
Tl 81
Pb 82
Bi 83
Po 84
At 85
Rn 86

0.0005
0.0020
0.0059
0.0136
0.0274
0.0501
0.0851

0.0072
0.0217
0.0441
0.0753
0.1162
0.1704
0.2392

0.074
0. 171
0.290
0.426
0.582
0.763
0.9708

0.227
0.458
0.709
0.973
1.260
1.576
l. 922

0.860
l.614
2.377
3.131
3.908
4. 725
5.588

-0
-0.001
-0.003
-0.007
-0.014
-0.025
-0.043

-0.004
-0.013
-0.027
-0.047
-0.074
-0.111
-0. 157

-0.054
-0.127
-0.216
-0.319
-0.438
-0.578
-0.739

-0.183
-0.371
-0.577
-0.795
-l.033
-l. 296
-l. 587

-0.750
-1.411
-2.083
-2. 750
-3.438
-4. 165
-4. 935

-0.001
-0.004
-0.015
-0.038
-0.081
-0. 153
-0.268
-0.440

-0.036
-0.090
-0. 188
-0.316
-0.484
-0. 702
-0.978
-l.321

-0.695
-l.061
-1.640
-2. 241
-2.923
-3.705
-4. 596
-5.615

-l. 954
-2. 787
-3.997
-5.149
-6.381
-7.728
-9.208

-10.837

-7.662
-10.27
-13.95
-17.26
-20. 61
-24. 12
-27. 84
-31.79

0.001
0.003
0.010
0.025
0.053
0. 100
0.174
0.285

0. 022
0.056
0. 118
0.197
0.307
0.419
0.511
O. 812

0.416
0.609
0.978
l.283
1.737
2. 198
2. 623
3.198

1.140
1.624
2. 327
2.993
3.568
4. 325
5.340
6.278

4. 199
5.623
7.639
9.443

11.27
13.22
15.25
17.37

-0
-0.001
-0.005
-0.013
-0.028
-0.053
-0.094
-0.155

-0.014
-0.034
-0.070
-0.119
-0. 177
-0.283
-0.467
-0.509

-0.279
-0.452
-0.662
-0.958
-1.186
-1.507
-1.973
-2.417

-0.814
-1.163
-1.670
-2. 156
-2.813
-3.403
-3.868
-4.559

-3.463
-4. 642
-6.315
-7.814
-9.334

-10.90
-12.59
-14.42

0
0

-0.001
-0.002
-0.005
-0.008
-0.015

-0.002
-0.006
-0.012
-0.022
-0.036
-0.054
-0.077

-0.029
-0.070
-0.119
-0.177
-0.244
-0.324
-0.415

-0.107
-0.218
-0.341
-0.471
-0.613
-0.771
-0.946

-0.463
-0.873
-1.291
-1.706
-2. 135
-2.590
-3.072
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convenience, we assume that B(Z) is the same
for all atoms in a given row of the periodic table,
that C is the same for all atoms in a given column,
and that C varies linea. rly across the periodic
table. In effect, the C factor weighs the contri-

butions of different core regions in crystals con-
taining more than one atomic species in the unit
cell, while the 8 factor provides the average re-
normalization over the unit cell.

With this in mind, we define B(Z) as follows:

Table II. Estimated spin-orbit splittings Qp ) and net relativistic and spin-orbit coupling corrections for s-
like conduction-band edges (6Es ) and P-like valence-band edges (5E ) at k= f000] in diamond- and sphalerite-est est

type crystals. hpes is compared with experimental values of the spin-orbit splitting of the p-like valence-band
state at k= [000], A~ P, and with &4&, where 6& P is the observed splitting of the P-like valence-band state~ 0 ~

2
at k=(m/u) f111j. According to present theories, 2&& p should be approximately equal to Ao p, which is the di-
rect experimental counterpart of 6p . Where not otherwise indicated, the experimental error is probably bet-
ter than +10%; - denotes somewhat higher uncertainty. Averages were taken in cases where several independent
results are available. Where the interpretation of the experimental data is doubtful, no experimental values are
quoted. The experimental data for the III-V and II-VI compounds are contained in references 2, 3, and 4. All en-
tries below are in electron volts.

Crystal
exp

0
exp est

'p
est

s

C
Si
Ge
nSn
BN
BP
BAs
BSb
AlN
AlP
AlAs
AlSb
GaN
GaP
GaAs
GaSb
InN
InP
InAs
InSb
ZnS
ZnSe
ZnTe
CdS
CdSe
CdTe
HgS
HgSe
HgTe
CuC1
CuRr
CUI

AgI

0. 006 + 0.001
b0. 0441~ 0.0004

0.290 + 0.005

-0.75

0. 13
0.34

0.43

0.44

0.43

0.29+ 0.02
0.71+ 0.05

e

0.60

0.35
0. 70

0.21
0.40
0.81

0.53
0.86

0.42
0.86

-0.47
0. 98

0.006
0.044
0.290
0. 71
0.010
0.051
0.285
0.65
0.016
0.057
0.29
0.66
0.065
0. 11
0.34
0.71
0. 16
0.20
0.44
0.80
0. 11
0.50
1.06
0. 135
0.52
1.09
0.24
0.63
1.19
0. 17
0. 76
l. 58
1.58

-0.013
-0. 12
-0.96
-2. 16
-0.046
-0.095
-0.43
-0.97
-0.056
-0. 11
-0.44
-0.98
-0.45
-0.50
-0.84
-1.38
-1.12
-1.17
-1.51
-2.05
-0.42
-0.63
-0.94
-1.02
-1.22
-1.54
-3.91
-4. 12
-4.43
-0.28
-0.28
-0.28
-0.81

-0.001
-0.013
-0. 12
-0.34
-0.002
-0.015
-0. 12
-0.31
-0.003
-0.017
-0. 12
-0.32
-0.025
-0.038
-0. 14
-0.34
-0.074
-0.088
-0. 19
-0.39
-0.035
-0.21
-0.52
-0.048
-0.22
-0.53
-0. 11
-0.28
-0.56
-0.054
-0.33
-0.77
-0. 77

aC. J. Rauch, Proceedings of the International Conference on the Physics of Semiconductors, Exeter, July 1962
(The Institute of Physics and The Physical Society, London, 1962), p. 276.bS. Zwerdling, K. J. Button, B. Lax, and L. M. Both, Phys. Rev. Letters 4, 173 (1960).

M. V. Hobden, J. Phys. Chem. Solids 23, 821 (1962).
F. Lukes and E. Schmidt, reference 4.e
M. Cardona and D. L. Greenaway, reference 2.
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where the numerator is a tentative estimate of
quantity X for atom Z embedded in a. crystal, and
the denominator is the adjusted value of X for
atom Z as given by adjustment A. Vfe shall es-
tablish our 8 scale by matching experimental
spin-orbit splittings for the I'» state in diamond-
type crystals with the adjusted spin-orbit split-
tings for the corresponding free atom orbitals.
This matching procedure yields B(6)=1.00 (dia-
mond); B(14) = 1.56 (silicon); B(32) = 1.67 (ger-
manium); and B(50) =1.67 (grey tin). In ac-
cordance with our model, we set B(Z) =1.00 for
all row 2 atoms, B(Z) =1.56 for all row 3 atoms,
and B(Z}=1.67 for all row 4 and 5 atoms. In
the absence of a suitable experimental guidepost,
we arbitrarily set B(Z) =1.67 for all row 6 atoms
as well.

Table I summarizes the essential results we
obtain after applying the A and B (but not the C)
adjustments to all the atoms encompassed in our
study. 5Es is the net shift of the s-like conduc-
tion-band edge, and 6Ef, is the net shift of the
p-like valence-band edge, i.e. , the upper mem-
ber of the spin-orbit split p-like valence-band
state. Although Table I is intended for use pri-
marily in the study of diamond- and sphalerite-
type crystals, it can probably be applied without
serious modification to other tetrahedrally bonded
semiconductors (wurtzite, chalcopyrite, etc. ),
where the renormalization problem is analogous.
In order to apply Table I to other types of crys-
tals, it would be necessary to re-examine the
renormalization problem, and to change the 8
scale accordingly.

Returning to the diamond- and sphalerite-type
crystals, our model yields the following C factors
for the s-like conduction-band state: IV-IV com-
pound: C = 1/2; III-V compound: C(III) = 2/3,
C(V) =1/3; II-VI compound: C(II) =5/6, C(VI)
=1/6; I-VII compound: C(I) =1, C(VII) =0. For
the p-like valence-band state, we have, similarly,
C(IV) =1/2; C(III) =1/3, C(V) =2/3; C(II) =1/6,
C(VI) = 5/6; C(I) =0, C(VII) =1. The total correc-
tion for the quantity X for the III-V compound
Z,Z„ for example, is given by: X(Z,Z, ) =X(Z, )
&&C(III) +X(Z,)C(V), where X(Z, ) and X(Z,) are
given in Table I. A diamond-type crystal mould
be treated here as the IV-IV compound ZgZy.

Our final estimates (including the C factor)
for the relativistic and spin-orbit corrections
are presented in Table II. Our estimates for

the spin-orbit splittings are in somewhat better
agreement with experimental values than are
similar estimates previously given. ' ~ The
estimates given in Table II for the relativistic
corrections represent the principal original con-
tribution of the present work.

According to Table II, for example, the net
relativistic and spin-orbit correction for the
k = [000] gap in germanium is -0.96 + 0. 12 = -0.84
eV, which is to be compared with the observed
gap (0.80 eV), the observed spin-orbit splitting
of I'»~ (0.29 eV), and the observed conduction-
band edge separations 6, —I; (0.85 —0.80 = 0.05
eV) and I', ~ -L, (0.80 —0.66=0. 14 eV). (All
values quoted refer to 300'K.")

Since the magnitude of the relativistic and
spin-orbit corrections is strongly dependent on
the atomic orbital character of crystal wave
functions in the ion core regions, "these cor-
rections can be expected to vary considerably
from band to band at a given k, and from point
to point in the reduced zone for a given band.
If sufficiently large, these corrections can affect
the detailed form of the band structure appreci-
ably. In the case of germanium, we may con-
clude, on the basis of our estimates, that the
band structure in the important region border-
ing the forbidden band will be significantly af-
fected by relativistic effects. It is unlikely that
a nonrelativistic energy-band calculation for
such a crystal can correctly predict the order
of the various conduction-band minima, let alone
the width of the forbidden band at any value of k.
A nonrelativistic calculation for germanium would
have to yield a k = [000j forbidden gap of 1.64 eV
if the net correction of -0.84 eV is to reduce this
to the observed value of 0.80 eV. In crystals
such as grey tin, ' the relativistic corrections
become so large (see Table II) that the relativis-
tic band structure would bear slight resemblance
to its nonrelativistic counterpart. The situation
in other crystals can be ascertained with the aid
of Tables I and II.
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ELECTRONIC PARAMAGNETIC RELAXATION TIMES OF METAL-AMMONIA SOLUTIONS*
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Electronic paramagnetic relaxation times of
potassium-ammonia solutions have been meas-
ured over a range of concentrations and tempera-
tures both by the continuous-wave saturation
method' and by the use of pulsed radiofrequency
fields. ' Hutchison and O'Reilly' found that the
spin-lattice (T,) and spin-spin (T,) relaxation
times were equal for concentrated K solutions
(&0.2M at 25'C) but that T, is as long as two
times T, in more dilute solutions. Pollak re-
ported from pulse measurements that T, and T,
are equal over the entire range of concentration
(0.004 to 0.8 mole liter ') and temperature
(+30'C to -50'C) studied. T, values measured
by Pollak are in good agreement with those meas-
ured by the cw method. It is the purpose of this
note to point out that the above results are con-
sistent with one another and are a consequence
of the nature of the relaxation mechanism & of
the unpaired electrons. This mechanism has
been proposed~~3 to proceed via the hyperfine
interactions between the unpaired electrons and
nitrogen-14 nuclei of the ammonia molecules.

Let us assume, for the moment, that both the
nuclear and the electronic relaxation proceed
via an isotropic hyperfine interaction and denote
the total nuclear (N'4) spin by f, total unpaired
electron spin by 5, nuclear relaxation times by
T1„and T2„, and electronic relaxation times by
T1e and T2e. The equations of motion of the
va, rious components of spin are as follows:

d(s ) -l 1

((S )-SQ)+ T ((I )-IQ),
le 1'

d(I )
((I ) —IQ) +

T ((S ) —S ),z
1

z 0'

d(S )/dt = (-l/T )(S ),2e

d(l )/dt = ( 1/T )(I );-
2pl p,

where p, =x or y, () means the canonical ensemble
average, and 80 and Io are the thermal equilibrium
values of (Sz) and (Iz), respectively. Equations
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