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GIANT OSCILLATORY ATTENUATION OF HELICON AND ALFVEN WAVES

P. B. Miller

IBM Watson Research Center, Yorktown Heights, New York
(Received 24 September 1963)

The propagation and attenuation of helicon!™*
and Alfvén waves® 7 in solids have been discussed
using classical models of transport. By the use
of a quantum model to calculate the current den-
sity, we have found that giant oscillations are
present in the attenuation and in the real part of
the conductivity. The meaning of giant is that
the attenuation coefficient in cm™? (QI) varies
with magnetic field H so that (@, Max _ -Qr Min)
> Qr Min - gych giant oscﬂlatmns have been found
in the magnetoacoustic attenuation by Gurevich
et al. 8 We find similar giant oscillations in the
attenuation of helicon and Alfvén waves although
different selection rules on the Landau quantum
number n lead to a period which is approximately
periodic in H~! but which differs from the usual
de Haas—van Alphen period and is a slowly vary-
ing function of H.

Consider an electromagnetic wave (helicon or
Alfvén wave) propagating in a solid state plasma
with a static magnetic field (H) along the z axis.
If the charge carriers have an isotropic effective
mass, the normal modes in both cases will be
circularly polarized with an electric field

E:Et(f-i)?)exp[i(wt+Qz)] (1)

where from Maxwell’s equations @ is given by
the solution of

=(-41iw/C*o(Q) @

where o(Q) is the wave-number-dependent con-
ductivity. When Reo(Q) vanishes, undamped prop-
agation occurs for those modes where Imo(Q) is
positive. Equation (2) is strictly valid only when
the real part of ¢(Q) is much smaller than the
imaginary part since ¢(Q) is only defined for real
€ and hence may be used to describe quantitatively
both undamped and weakly damped propagation.

In a qualitative sense, it also describes the strong-

damping region.

The current response to an electric field given
by (1) is calculated by a perturbation method us-
ing the Landau levels in a magnetic field as basis
states. With an appropriate choice of gauge, the
levels are labeled by quantum numbers |7,k kz)
and energy E, (k;) =0t +3)hw . +h%;%/2m where
w, is the cyclotron frequency. For isotropic
carriers, the use of the selection rules Az =1 and
Akz =@ in a transition leads to a conductivity
given by

Ne? e? wc?

o(Q)=Re_ ¢ we

imw T hw

f[En(kz)] -f[En l(kz +Q)]
w- wc-thQ/m -is

X Z(n +1) (3)
n,k,

where f is the Fermi function and s - 0 in the limit

of no scattering. When Aw, <kT we may replace

the sum over n by an integration and we obtain

the same result as from a Boltzmann equation

treatment,®? with no oscillatory terms. When

hw ¢ > *T the summation over n cannot be replaced

by integration. To evaluate Reo one replaces the

energy denominator by a delta function to obtain

mezwc2
Reol@ =3 g
* D MVIE, 6, J]-FIE, k +@]Hn+1), (4)
where
k0" hQ(“’ w,): (5)

Energy-momentum conservation implies that only
a single k, value (k,() contributes to absorption
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and leads to large oscillations in Reo.
For helicon waves propagating in metals Zw
«<ET and Eq. (4) becomes

2
3rNe? Wem hwc
Reol@) TimQuy [l i ( Qg )J—ﬁ

- 1 _h2 2
Ep- g +1ho -h%_ %/2m )
26T

x cosh™? [

where n, is the integer for which the argument of
the cosh function is a minimum. The relation (6)
describes oscillations of giant amplitude (ORMax
-0p 1) > oR ™ in the real part of the conduc-
tivity which are approximately periodic in H™*
with a period given by

1\ _ en 1
A(E) _mEFc 1- [(wc' w)/QUF]Z' o

The attenuation coefficient ; is found from (2)
to be proportional to [(o;*+0g?)"?- ¢/] in the quali-
tative sense previously discussed and hence also
shows giant oscillations with the period (7). The
denominator in (7) is a slowly varying function of
H compared to the very short de Haas—van Alphen
period in metals. No giant oscillations occur in
Imo(Q) since the summation over k, is not re-
stricted. Thus the real part of @, @p, is given
by the usual helicon dispersion relation @p
=~ (4rNew/cH)*?. The onset of the absorption is
at Qup =wp-w.2™

When we consider Alfvén waves in semimetals,
we need to evaluate (4) in the limit Zw > &7 and

sum over both electrons and holes. The initial
state taking part in the transition can now be in a
band of energies from Ep to Ep - hw with a fixed
k, value given by (5) for electrons and for holes.
The number of Landau levels contributing to the
attenuation will therefore oscillate. It has been
shown®7 that attenuation occurs below a threshold
value defined as the field where the equality w,
=w +UpQp is satisfied for any carrier. The real
part of the wave number is given by ¢p =wH™!
X (41TZ)N]~m]-)“2 and the sum is over all carriers.?®
Below the onset the attenuation will thus be os-
cillatory with each carrier contributing with a
period given by Eq. (7).

Helpful discussions on these topics with J. Kirsch
and M. Pomerantz are gratefully acknowledged.

!F. E. Rose, M. T. Taylor, and R. Bowers, Phys.
Rev. 127, 1122 (1962).

2p, B. Miller and R. R. Haering, Phys. Rev. 128,
126 (1962).

$p. M. Platzman and S. J. Buchsbaum, Phys. Rev.
128, 1005 (1962).

‘E. A. Stern, Phys. Rev. Letters 10, 91 (1963).

5S. J. Buchsbaum and J. K. Galt, Phys. Fluids 4,
1514 (1961).

8J. Kirsch and P. B. Miller, Phys. Rev. Letters 9,
421 (1962).

'J. Kirsch (to be published).

8V. L. Gurevich, V. G. Skobov, and Y. U. Firsov,
Zh. Eksperim. i Teor. Fiz. 40, 786 (1961) [transla-
tion: Soviet Phys.—JETP 13, 552 (1961)].

M. H. Cohen, M. J. Harrison, and W. A, Harrison,
Phys. Rev. 117, 937 (1960).

RELATIVISTIC EFFECTS IN THE BAND STRUCTURE OF PbTe*

L. E. Johnson, J. B. Conklin, and G. W. Pratt, Jr.
Materials Theory Group, Department of Electrical Engineering,
Massachusetts Institute of Technology, Cambridge, Massachusetts
(Received 16 October 1963; revised manuscript received 12 November 1963)

The purpose of this Letter is to point out that
relativistic interactions have a drastic effect on
the energy band structrue of PbTe and are of
major importance in understanding the energy
gaps and effective masses. These interactions
are commonly derived by converting the 4-com-
ponent Dirac equation into a second-order equa-
tion and then reducing this to a two-component
form. When this is done, as in the Pauli ap-
proximation, two other terms appear besides
the spin-orbit interaction, namely, the mass-
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velocity energy correction and a term of the
form (ip,/2mc)é-p, where € is the electric field
seen by an electron and B is its momentum. If
the spatial components of the vector potential
are assumed to be zero, the one-electron Hamil-
tonian is!

3= -(m2/2m)V? -e @ - (1/2mc?)(E +e@)?
- (i io/2mc) €+ p + (o/2me) 0 (€ XD).

We show in this Letter that the mass-velocity



