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a =amplitude for I =J- 1/2,

b =amplitude for l = J+1/2, (2)

In this Letter we discuss the decay process

F*-F+ v,

where F* has spin J and decays into a particle
with spin 1/2 (I') and one with spin zero (s). We
show how 4 and the amplitudes for the parity
states I =4+1/2 may be measured if the trans-
verse and longitudinal polarization of Y are ap-
preciable. We denote these amplitudes by

defined so that the lifetime of Y* is given by

T '=2&p (Iat'+ Ibl');

and in accordance with the notations for 2=1/2,
we define the parameters

y=(fai'- (b(')/Oa)' [b+('),

a = 2 Reab~/Oa ts+ I b fs),

g =2lmab*/()a (s+ (b ts).

If parity is conserved in (1), o. =P =0 and y = +1.
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Note that

a'+P'+y'=1. (4)

are proportional to tJ ', the relation is'

M M.
(Y )=n t if L is even,

To see how J and the parameters o. , P, and y
may be measured, first consider a collection of
I'* at rest. The state of the system is complete-
ly specified by (28+1)I real numbers which are
conveniently chosen to be the multipole param-
eters tL (L and M are integers; 0 «L «2J',
-L «M «L). The tLM have the reality property
that

For given I., the 2I +1 parameters tr are com-
ponents of an irreducible tensor~ of rank I . This
means that under a spatial rotation the tr M obey
the same transformation law as the spherical
harmonics YLM. The scalar to is a normaliza-
tion constant which we shall take equal to unity.
For I.= I, the t,M measure the polarization of
the initial state P . They are related to the ex-
pectation values of the spin operators S by

M M.(1' ) =an Ot if I, is odd,

where

LO = (-) [(24+ 1)/4w] C(JZL; 1/2, -1/2), (10)

and C(ZZL; mm') = (JmJm' (OJLM) is'a standard
Clebsch-Gordan coefficient. Note that nl 0

= 0
for L, &2J.

The an@alar distribution of longitudinal polari-
zation (IP $) is given by the multipole param-
eters in a similar manner6; the moments of this
function (A is the unit vector with spherical an-
gles 8 and p),

fdQIP AY =-(P AY ),

are

M M .(P AY )=n t if L is odd, (12)

M M.(P A, Y ) =an Ot if I. is even. (12 )

For L, &1, they are expectation values of irre-
ducible tensors formed from the components of
S. For example,

(3S '-8'),

The angular distribution of transverse polari-
zation also yields measurable quantities propor-
tional to tLM (with odd L). If both y and p are
different from zero, the components of IPTr
=IP -IP kk have even and odd moments. I et7

P, = Pz and ~2P~~ = +(P„+iP&);then we fin.d~

Bet~i~(S ~-S 2)
X

Imti~~(S S +S S ).
X P P X

The normalization of the tLM is given below [see
Eqs. (18) and (19)]. For the present, we shall
assume that the tIM are unknown parameters
(determined by the process which formed the
collection of Y~).

Let I(8, p)b, Q be the fraction of Y particles
emitted into the element of solid angle AQ and
let P be the polarization of these particles. Since
I(8, p) is a scalar function of the angles 8 and y,
the moments of I,

= [(L+1)/(2L+1) Q (P

xC(1, I. —1, L;m, M m)+[L—/(2L+1)]1/2

xg (P Y
1

)C(l L+1 L m M-m), (13)

where

n = (-) [(2Z+ 1)/4v] C(JJL; 1/2, 1/2). (14)
J-1 2 1 2

Note that g&& =0 for I. even, and that only compo-
nents of PTr contribute in (13). For the odd mo-
ments of PT» we find

fdnI(e, y)Y (e, y) =(Y (8) AE t = -i P (P Y )C(lLLy mM - m). (15)
M M-m
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The right-hand side of (15) is a sum of averages
of the components of the vector P &k weighted
with even functions of k. (Therefore, in the ab-
sence of final-state interactions, it vanishes if
time-reversal invariance holds. ) Since for L
odd~

[L(L+1)]~ n =(2J+1)n

p =(2J+ I) Q (2L+ I)f *r

where the matrix TL is formed from the com-
ponents of the spin operator S as the spherical
harmonic YLM is formed from the components
of a unit vector. The normalization is given by
the relation

(is)

Tr r, r t~=[(2J+I)/(2L+I)]5,5,. (19)

In a representation in which T~ is diagonal, the
matrix elements are Clebsch-Gordan coefficients;
viz ~ q

(T ),=C(JLJ; m'M).
M

mm' (20)

every fLM (with L odd) appreciably different
from zero yields a possible measurement of the
quantities y(2J+I) and P(2J+ I). If parity is
conserved in (1), P =0, y =el, and these are
measurements of J and /. If (9') and (15) are
different from zero, their measured values com-
bined with (4) yield J (and o., P, y).

Owing to symmetries in the production process,
some of the tLM may vanish identically. For
example, if the Y* are produced in a parity-con-
serving reaction

4+8 = Y*+D,

where the incident and target particles are un-
polarized and one sums over the spin states of
D particles, the state of the I'* (in their rest
frame) is invariant against rotations of 180'
about the normal to the production plane. Con-
sequently if the normal to the production plane
is the z axis, EL~=0 for I odd [since tL
-(-) tL under a rotation of 180' about the
z axis]. Similarly one may show that, for I'*
produced along the beam direction, the t&M
with L odd vanish identically.

For given J, the tLM satisfy certain inequal-
ities. The density matrix p for the Y* state may
be written as

Using (19), one sees that o

M M
t = TrpT (21)

To obtain the range of these parameters, one
may form the Hermitian matrices

M MIRet t ~largest eigenvalue of g

M M
)Imt )

~ largest eigenvalue of I (22)

That all tLM cannot simultaneously reach their
upper bounds (22) may be seen from the restric-
tion Tr(p') ~ Trp which yields

(2L+1)lt i «2J+1.M 2

J,M
(23)

A lower bound on the sum in (23) for I'* states
which are incoherent mixtures of Q pure states
is given by a generalization of the Eberhard-
Good theorem (see Capps') Q Tr(p') ~ Trp,' this
gives

Q Q (2L+1) ~t [
~ 2J+1.M 2

L, M
(24)
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In quantum field theory it is usually considered
that the magnitudes of the coupling constants can
assume any value irrespective of the particle
mass. In the case of a bound state in the nonrela-
tivistic theory, however, Heisenberg' showed
that the coupling constant is expressed through
the constant in the asymptotics of the wave func-
tion of this state. Subsequently in a number of
reports' ' it was shown that the physical (renor-
malized) coupling constants are bounded above by
definite boundaries which depend on the particle
mass, In these reports, however, the considera-
tions either had resort to models or' were based
on the assumption that the interaction of the ele-
mentary particles is characterized by an effective
radius, which does not increase with the increase
of the coupling constant. We will show here that
the restrictions on the magnitudes of the coupling
constants at any given mass follow from the gen-
eral principles of quantum field theory with no
additional assumption. (A detailed report appears
elsewhere. ')

Our assumption will be based on the represen-
tation of Green's function in the form of the Leh-
man-KKlldn" expansion; i.e. , we will consider
that all the conditions under which this expansion
takes place are fulfilled.

We will first consider a case of interaction of
three boson fields with zero spin g, 5, and c, and
we will obtain the restriction on the magnitude of
the coupling constant g' of these three fields. We
will consider that particles a, 6, and c are stable,
ynz & pn~ & inc', we will assume also that 5 and c
are the closest particles (with regard to total
mass) to particle a. Based on the Lehman-KKlldn

expansion of the Green's function of boson g in
our previous work, ' we obtain the following in-
equality restricting the possible magnitude of the
renormalized coupling constant g':

1 g — @&].,
4m (m +m )'

b c

C =2(m +m )' l I'(K') i' q(K')dK'. (1)
h c (m +m )2(K'-m ')'

c a

Here I (K ) = I (K mh mc ) is the vertex part for
a, f, c particle interaction; q(K') = (2K) '[K'- (mh
+mc)']"'[K'- (mf, - mc)']"' is the momentum of b

and c particles in the center of mass. In order
to obtain from inequality (1) definite restriction
for g', the magnitude of 4 at given masses rn~,
m~, mc must be bounded below.

Let us find the minimum in the class of functions
I'(K') having the following characteristics:

(I) I'(K') is a holomorphic function of K' in the
complex g' plane with a cut along the real axis,
extending from point K' = (m& +m )' to infinity.
To the left of the point K'= (mt, +mc)' on the real
axis, I'(K') is real.

(II) The rate of increase of 1 (K') as K' tends to
~ is not more rapid than an exponential increase.

(III) At the point K'=ma', I'(ma') =1.
We assume that I'(K') has no poles in the com-

plex plane. In principle, the poles of I'(K') could
b~ situated on the real axis in the interval rn~'
& K'& (mt, +mc)' at point K' at which the Green's
function D(K') becomes zero, and I"(K')D(K')
—const when K'- K„'. [The latter case follows
from, for example, Schwinger's equation for the


