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the resonance multiplet. Thus it appears that
experimental resonances do not necessarily arise
directly from the poles of a symmetry multiplet
but may arise instead from the shadows of these
poles.
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The unrenormalized Schwinger-Dyson equa-
tions' ' for the Green's functions of ordinary
quantum electrodynamics have been examined in
a systematic nonperturbative approximation
scheme. %e have obtained the following results.
%e can obtain finite solutions of the equations
without infinite renormalizations if and only if
the mechanical mass of the particle is taken to
be zero. This still allows a finite physical mass
for the particle. The asymptotic behavior of the
finite, unrenormalized electron and photon prop-
agators is found to be

1/s(p) -~p+ o(pp),

as P - ~, where P =-1+(1-3ngw)'", and

1/D(k') —k'(1 + O[(k')P ]j,
as k'- ~, where P' =-ag3w and where a, is the
bare electron coupling constant. The second
form holds only for small a, . This behavior im-
plies that all renormalization constants are finite.
In outline, these results are obtained as follows.

If the unrenormalized Green's functions actually
exist, then the following statements can be made.
The electron Green's function S(P) has the spec-
tral representation

1/$(p) =yp+m, —fdKr(K)/(yp+K), (3

where the integral over the mass spectrum con-

verges; and therefore, as P —~,

1/S(p) -,p+m, (4)

for any reasonable r(K). Secondly, because of
Ward's identity,

k"r (p+k, p)=s '(p+k)-s '(p), (5)

we have for fixed k by differentiating (5) with
respect to k as P - ~

r (p+k, p)-q (6)

[actually faster than S approaches its asymptotic
value because of the difference which appears in

(5)]. Finally the photon Green's function has the
spectral form

1/D(k') k'+k' f=dh's(~')/(x' k')+,

so

D (k') —1/k'

as k'- ~ for any reasonable s(g'). We again em-
phasize that all of these statements refer to un-
renormalized Green's functions, none of which
exists in perturbation theory. In ordinary lan-
guage, the first statement implies that 5m and
Z, (=Z, ) are finite. The final statement implies
that Z3 is finite.

The systematic approximation scheme used by
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us yields results at every stage consistent with

these properties of the unrenormalized Green's
functions if and only if mo, the mechanical mass,
is zero. Thus, from our point of view, quantum
electrodynamics makes sense only if the electron
mass is totally dynamical.

The unrenormalized equation for the electron
Green's function is

1/S(P) =yP+m +ie f[(dP')/(2w) ]

x D (P P }y -S(P )r (P, P), (9)
eP

where D~p(k) =m~pD(k) and w~p =g~p+k~afl
+ kpAo, .A, ~(k) is an arbitrary vector function of k

which fixes the gauge. If one could solve the full
theory exactly, it would make no difference for
the physical content of the theory which gauge
was used. Also, if one could solve the unre-
normalized Green's function equations with per-
turbation theory, it would make no difference
which gauge was used. Any nonperturbative ap-
proximation will, in general, depend upon the
choice of gauge. For a particular approximation
scheme, there may be a gauge in which that ap-
proximation is best. %e have found an approxi-
mation method and a gauge x~(k) =- k~/k' (the
"Landau" gauge) which yield the high-energy be-
havior of the exact theory at the first stage. The
approximation method described below does not
yield results for physical quantities which are
independent of this choice. However, this lack
of strict gauge invariance affects only the low-
energy contributions which can be treated with
the usual methods. The approximation method
is, nevertheless, gauge invariant in the restricted
sense that Ward's identity (5) is maintained at
each stage. Our procedure is as follows: As-
sume that in (9) we can replace rfl by its asymp-
totic value y~ because in virtue of the difference
in (5), rfl should approach its asymptotic value
more rapidly than $. Furthermore, we use the
high-k limit (8) for D(k'). Thus, we obtain the
equation'

1/S(P) —yP +m +ie 'f[(dP')/(2m)']

in the Landau gauge we find finite solutions of
(10) only if m, = 0. The asymptotic behavior of
the solution depends only on the asymptotic be-
havior of the integrand, and it is given by (1).
Since we obtain this result only when mo= 0, it
must be possible to obtain the total mass from
the self-energy by the equation

m =-fdffr(Z)/(Z-m),

where since (1) is equivalent to

~(sc) —fc", (12)

the integral (11) converges. In perturbation the-

ory r remains constant for large K and the inte-
gral (11) is logarithmically divergent. Since the
physical mass appears only as a scale, the self-
energy must be proportional to m so that (11) re-
duces to an equation for ao of the form

m =mF(a, ). (13)

r (p+k, p)

=y fe f[-(dp )/(2. )']D (p- p )0 nP

It can be shown analytically that (13) is satisfied
in the limit no-0.

Although for finite values of P we do not expect
(10) to be quantitatively reliable, it is interesting
to regard it as an approximate equation for S(p}
valid for all values of P. In order to avoid an
infrared divergence, it is necessary to give the
photon a small mass a. Equation (10) was solved
using an electronic computer for X = 0. 1m. Using
the solution to (10) obtained by the computer, it
appears as if (13) is approximately satisfied
within a few percent for 0& n, & 0.3.

For a, = 0. 3 the solution of the equation (10)
for r(k} remains close to its perturbation value
for K 10m, at which point it joins smoothly to
its damped asymptotic form (12).

A systematic approximation scheme has been
developed in which Eq. (10) is the first step.
The first nontrivial approximation for I' is

x D (p —p )y S(p')y,o, a
eP

where D~p'(k) = (g~~ - k~kp/k')/k' It can easily.
be shown analytically that there are no finite
solutions to (10) in any covariant gauge except
the Landau gauge. The unique feature of this
gauge is the ultraviolet finiteness of Z, in the
lowest order of perturbation theory. However,

x y S(p +k)r (p +k, p )S(p )y, (14)

where S is the solution to (10). It is easy to show
that (5) is satisfied. Therefore the asymptotic
behavior of r~ obtained from (14) is consistent
with the original assumption of replacing I"~ by

y~ in (9). It must still be proved that the cor-
rections to r~ given by (14) are such that they
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xS(P ——,'P)- S(P)I (P, P)S(p)], (16)

and where the subtraction of the second term re-
sults from using the properly gauge-invariant
form of the current. In perturbation theory, (16)
diverges logarithmically. We find, using the in-
tegral equation (14) for I', that the leading asymp-
totic terms in S(p+ ~k)I'"S(p- ~k) have the same
behavior as in perturbation theory with the excep-
tion of the terms which give a contribution to p
according to (16}. These are vanishingly small
in comparison. To correctly compute them, it
is necessary to also include in a self-consistent
way the corrections to D given by (15) and (16)
where they multiply the dominant terms in SI S.
We then find that the asymptotic behavior of the
relevant amplitudes is such that

s(i ) - const(1/i )
2 2 Q 3'

which contrasts with the perturbation result s(i')- const. The form of the exponent is valid for
small no. Such an asymptotic behavior for s im-
plies a finite Z, and an asymptotic behavior for
D which is consistent with the original assump-
tion used to derive (9}.

Quantum electrodynamics with no mechanical
mass but finite physical mass represents a spon-
taneous breakdown of y, invariance. Hence one
might be concerned that there may be zero-mass
pseudoscalar particles in such a theory. How-

ever, we believe that this does not necessarily
occur. ' The muon-electron mass difference, for

do not influence our original approximation (9)
for S in the asymptotic region. We can compute
the asymptotic corrections to D using the so-
determined S and I . We find that they are finite,
and hence the original assumption that D(k')- I/O' is self-consistent. It has been shown fur-
ther that these corrections do not influence our
original approximation for S asymptotically.

The expression used to calculate the first cor-
rection to D(k') is

I/D(k') =k'[I+ p(k')],

where

p(u )(n g" -~"~ )

=-ie, dp 2~ t~ S p+-,'u r p+-,'u, p- —,'a

example, may also arise from a spontaneous
breakdown of the original symmetry in the I.a-
grangian which includes both fields coupled to the
electromagnetic field. '

The fact that we have shown that quantum elec-
trodynamics is a finite theory according to our
method makes it extremely attractive to try to
make use of a similar method of coupling of all
Fermi fields to neutral vector-meson fields. The
property which distinguishes these theories from
all other field theories is that they are the only
ones which make sense as local relativistic the-
ories. This is at least the case when they are
treated according to the above scheme.

In conclusion, we find that quantum electrody-
namics may be regarded as a perfectly consistent
theory. The usual divergences from our point of
view arise from an unjustified use of perturbation
theory. On the other hand, renormalized pertur-
bation theory for finite quantities is modified only
in that integrals which are convergent in that the-
ory are made slightly more convergent. Only the
asymptotic dependence on energy is modified. De-
tailed calculations must be done to determine
quantitatively these effects.
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