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In this Letter we describe some experimental
and theoretical consequences of the fact that res-
onance poles may appear on more than one Rie-
mann sheet of the S matrix. We have in mind
particularly those resonances which belong to
multiplets in the unitary symmetry scheme SU, .
The main points we wish to note are these:

(i) In the S matrix for two or more coupled chan-
nels a resonance may appear as a pole on more
than one of the unphysical Riemann sheets.

(ii) In general, only one of these poles (the dom-
inant pole) will be near to the physical region.
Under certain circumstances, however, two poles
may be comparably important, in which case in-
terference between the poles could have an ob-
servable effect on the position and shape of the
resonance.

(iii) In the case of resonance multiplets of the
approximate symmetry scheme SU„ the presence
of several poles on different sheets representing
a single resonance allows the members of each
multiplet to move into coincidence, when full sym-
metry is established, without any of the difficul-
ties discussed by Oakes and Yang. '

The circumstances under which a resonance or

bound state leads to poles on more than one Rie-
mann sheet can be examined in terms of analytic-
ity and unitarity of the S matrix. This examina-
tion will not be given here, but we wish to note
that in addition to the usual assumptions of S-
matrix theory, our work requires analyticity in
the coupling between different channels. ' For the
sake of brevity our discussion is given, instead,
in terms of a simple resonance model based on a
sum of self-energy diagrams. 4 We should, how-
ever, emphasize that our results are more gen-
eral than the particular model considered. In par-
ticular, the fact that the model is S wave is not
essential, and identical results hold for any angu-
lar momentum state provided similar require-
ments of analyticity are satisfied.

We consider a single unstable particle of mass
M which has two decay modes, both into two iden-
tical particles of mass m (r= 1, 2) with 2m, &2m,
&M. The resonance model gives, as scattering
amplitude for two m, particles,

A (s) =ig '/[s-M'+Q(a +ib )],11 1 r r
where g~ is a coupling constant and
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If we choose both coupling constants suitably
small, the amplitude A«given by (1) (and sim-
ilarly A» and A») has a resonance for s near to
M'. This is due to a pole P on the third sheet,
reached directly from the physical sheet by going
down through the cut 4m, '& s. However, it is eas-
ily seen from (1) that there is also a pole P' to be
found by encircling the threshold s = 4m~ in the
opposite direction; that is, by crossing the real
axis in 4m, '&s &4m, '. The precise location of
the pole P' depends on the values of gg and g2 lf

g, )g„P' lies on the second sheet (that is„ the
sheet directly accessible from the physical sheet
through 4m|'& s &4m, ), while if g, »g„P' is on
the sheet reached from the second sheet by re-
crossing the real axis in 4m, '& s.

The pole P we call the dominant pole, and P' its
shadow pole. Since both of these are accompanied
by the usual complex conjugate poles Q and Q', we
see that in this simple two-channel model there
are, in all, four poles, the dominant pole P, its
shadow pole P', and their conjugate poles Q and
Ql

Our simple model can be easily generalized to
include n channels with masses m„m„', m„.
In this case the amplitudes have in all 2" poles,
which may be classified as a dominant pole P„
say, its shadows P„P„~,P& (N =2" ), and
their conjugate poles 'Qy Q2 etc. The sheets on
which these poles lie depend on the values of g„",
g„. If, for example, we consider the case g,)Q, gr, then n of the N poles P„P„. lie on
the n unphysical sheets directly accessible from
the physical sheet; that is, the sheets reached
direct;ly through 4mr ~

&s &4mr'.
In the general n-channel problem, we have shown

from unitarity and analyticity that a resonance may
be represented by anything from a single pole P,
with its complex conjugate Q, to (2" ) poles P;,
each with a conjugate pole Q-. As we show below,
the behavior of the resonance multiplets of the
scheme SU, when the symmetry is broken can be
simply explained if the resonances not only have
a dominant pole but also a series of shadow poles.

We consider next the experimental consequences
of a wide resonance just above a threshold for a
competing channel to which it is strongly coupled.
In the neighborhood of the resonance the denomi-

nator of A«(s) is approximately of the form

(x'- c)+i(d +fr), (2)

where x' is the energy relative to the threshold
4m, ', and x is positive when ~' is positive. It is
readily seen from (2) that if f ' is greater than 2c,
there will be a "false resonance" indicated by the
cross-section peaking at threshold. Qualitatively,
this corresponds to the width associated with the
new channel being comparable with the distance
above threshold. More generally in the absence
of a false resonance there will be some distortion
of the resonance shape. ' This interference be-
tween a resonance pole and its shadow may occur
in any partial wave; it is quite distinct from the
well-known cusp or step effect which comes from
a branch point in the numerator of the partial-
wave S matrix.

Finally we consider the problem posed by Oakes
and Yang, of how degeneracy of resonances in an

SU3 multiplet can deve lop continuous ly as sym-
metry-breaking interactions are switched off. '
As Oakes and Yang indicate, there is no path by
which a single resonance pole can emerge as a
bound state without conflicting with any simple
mass formula. However, if, as our work indi-
cates, every resonance corresponds to a series
of poles on different Riemann sheets, no such
difficulties arise. ' With each resonance multiplet
in the unitary symmetry scheme we suggest there
is associated a set of poles on the second sheet,
together with sets of shadow poles on other Rie-
mann sheets. The dominant resonance pole will
not, in general, be the pole on the second sheet
but will be the shadow pole on the sheet nearest
to the experimental value of energy at resonance,

When the symmetry-breaking interaction is
gradually switched off, the resonance poles will
move towards their final degenerate positions.
Their paths can be followed in our model by de-
creasing M' through real values in Eq. (1). As
M' decreases past each threshold, the role of
dominant pole is transferred from one shadow
pole Pr, say, to the next Pr ~ until finally the
pole on the second sheet becomes dominant. De-
creasing M' past the lowest threshold, this pole
goes through the threshold branch point on to the
physical sheet becoming a bound state. The
shadow poles remain on lower sheets. If a reso-
nance multiplet becomes a set of bound states of
equal masses when full symmetry is established,
it is interesting to note that the corresponding
bound-state poles will not, in general, be the
original set which were the dominant poles of
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the resonance multiplet. Thus it appears that
experimental resonances do not necessarily arise
directly from the poles of a symmetry multiplet
but may arise instead from the shadows of these
poles.
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The unrenormalized Schwinger-Dyson equa-
tions' ' for the Green's functions of ordinary
quantum electrodynamics have been examined in
a systematic nonperturbative approximation
scheme. %e have obtained the following results.
%e can obtain finite solutions of the equations
without infinite renormalizations if and only if
the mechanical mass of the particle is taken to
be zero. This still allows a finite physical mass
for the particle. The asymptotic behavior of the
finite, unrenormalized electron and photon prop-
agators is found to be

1/s(p) -~p+ o(pp),

as P - ~, where P =-1+(1-3ngw)'", and

1/D(k') —k'(1 + O[(k')P ]j,
as k'- ~, where P' =-ag3w and where a, is the
bare electron coupling constant. The second
form holds only for small a, . This behavior im-
plies that all renormalization constants are finite.
In outline, these results are obtained as follows.

If the unrenormalized Green's functions actually
exist, then the following statements can be made.
The electron Green's function S(P) has the spec-
tral representation

1/$(p) =yp+m, —fdKr(K)/(yp+K), (3

where the integral over the mass spectrum con-

verges; and therefore, as P —~,

1/S(p) -,p+m, (4)

for any reasonable r(K). Secondly, because of
Ward's identity,

k"r (p+k, p)=s '(p+k)-s '(p), (5)

we have for fixed k by differentiating (5) with
respect to k as P - ~

r (p+k, p)-q (6)

[actually faster than S approaches its asymptotic
value because of the difference which appears in

(5)]. Finally the photon Green's function has the
spectral form

1/D(k') k'+k' f=dh's(~')/(x' k')+,

so

D (k') —1/k'

as k'- ~ for any reasonable s(g'). We again em-
phasize that all of these statements refer to un-
renormalized Green's functions, none of which
exists in perturbation theory. In ordinary lan-
guage, the first statement implies that 5m and
Z, (=Z, ) are finite. The final statement implies
that Z3 is finite.

The systematic approximation scheme used by


