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The neutrino v; (I=e or ) is known' to be a
particle of zero charge. However, through its
weak interactions with other charged particles,
the neutrino can acquire an electromagnetic cur-
rent distribution. In this note, we assume a zero-
mass two-component theory for the neutrino and
the existence of an intermediate boson W*. The
weak-interaction Lagrangean between W* and the
leptons is given by

-z'g(px*[zpl'fy4y)\(l +y5)zpulj +conjugate term, (1)

where ¢,, y;, and y,; are, respectively, the field
operators for W+, ", and v;. Ina two-compo-
nent theory, the matrix element of the electro-
magnetic current operator J M evaluated between
states of a single neutrino depends only on a sin-
gle scalar function:

(V’IJAIV)=i[u’Ty4yA(1 +y5)u]F(q2), ()

where v and v’ refer to the initial and final four-
momenta of the neutrino, ¥ and «’ are the corre-
sponding spinors that satisfy the free neutrino
equation, and ¢%= (v - v’)2

We shall calculate F (g% by considering the sum
of all Feynman graphs which are of arbitrary
order in the fine structure constant o but only
first order in g®. Some examples are shown in
Fig. 1. In order to render these graphs finite,
it is necessary to introduce a cutoff A in momen-
tum space. The limit A - « is to be taken only
after the summation of all these graphs. A con-
venient gauge-invariant way to introduce such a

) (ii)

FIG. 1.
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cutoff is the so-called ¢-limiting formalism?®?
where A =¢"'?my,, and my, is the mass of W*.

In this formalism, the Ward identities are satis-
fied® for a finite cutoff. It follows that to every
order in «a the sum J, of all such Feynman graphs
satisfies the operator equation

4,7, =0, 3

which is valid* whether or not the initial and final
spinors « and u’ satisfy the Dirac equation with
the correct mass. Differentiating (3) with re-
spect to qy and then setting ¢ =0, we obtain the
well-known condition

F(g®)=0, at ¢*=0. (4)

When A - «, each of the Feynman graphs in
Fig. 1 diverges. The degree of divergence de-
pends sensitively on the gyromagnetic ratio (1 +«)
of the W. It has been pointed out? that the case
k# 0 is far more singular® than x =0. As we shall
see in the remark (2) below, this singular be-
havior for k # 0 seems to lead to a physically un-
acceptable result for the charge radius of the
neutrino.

We consider, therefore, the less singular case
k =0, so that apart from radiative corrections,
the magnetic moment of the W is (spin) x (ze/myy).
To discuss the behavior of Feynman graphs as A
-~ =, we expand F(g®) as a power series in g%

F@H =270 GH'F, ), (%)

(iii)

Examples of Feynman graphs for the charge distribution of vy (l=eorp).
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where each of the derivatives

n 2n
F,0=[a"F/o67)") ._
can, in turn, be expanded as a power series in o,
provided A is finite. The contributions to F_(0)
given by the two lowest order graphs, (i) and (ii)
in Fig. 1, remain finite as A -« so long as n # 1.
To obtain F,(0), it is necessary to include all the
higher order Feynman graphs. The most singular
part [F,(0)] is found to be

2 2,-1 2

[P, @), =-6rm ) g5 n(n/m )

s_

+Tya (@n?/m B ©)
where we keep, to each power of o, only the co-
efficient of the most divergent term in the power
series expansion of F,(0). The a,, are numbers
independent of either o or A. By the same type
of argument as used in reference 2, we shall as-
sume that the entire sum [F,(0)]¢ exists for A
=, although each term in the power series ex-
pansion diverges. Equation (6) can be rewritten
as

[Fl(O)]S = -(16172m W?‘)'lgze[-g Ina +G(x)],

where x = (@ A%/m Wz), and for small x the func-
tion G(x) can be represented by its series expan-
sion

G(x)=% Inx +Z);°anxn.

where (e?/4n) = a,

Carrying out the limit A -« and keeping « fixed,
we find®

[F, )] =- (167%m Wz)- 1gze[-g Ina +G(=)], (1)

where G(«) is independent of o. Mathematically,
this means that as a -0, F1(0) - 3 (167%mn %) 'g%
Xlna.

Similar considerations can also be applied to
the sum of the less singular terms in the power
series expansion of F,(0). For example, the two
lowest order graphs (i) and (ii) in Fig. 1 both
give finite contributions to F,(0), in addition to
the g% In(A%/m w?) term in (). Furthermore, the
finite contribution due to graph (i) contains a term
proportional to g% In(my,/m;)?, which is a result
of the degeneracy’ among intermediate states as
the mass of the charged lepton m - 0. Actually,
the magnitude of In(m W/m l)2 is quite comparable
to that of Ina. The constant remainder G(w) in
(7) is basically determined by divergences con-
nected with virtual W propagators and W-photon
interactions. Consequently, G(«) does not con-
tain a term proportional to g% ln(mW/ml)"’. In
the following, we evaluate the two lowest order
graphs (i) and (ii) exactly. The effects of higher
order graphs are included only so far as they
convert the § In(A%/my,°) term in (6) to the -} Ina
term in (7). The result for the complete function
F(q? is given by

F(q?) =-g%(16n%n Wz)“q?f(qz) ~-¢(107*® cm)%q% (g%)

£(g?) =§[In(137) + §] - (W;—‘z"> [g + (::l )2- (m

() ] (5)a()

where
b = (%q2)1/2’ c= (m W2+b2)1/2,

a =[b2x2+(mlz- mwz)x +mW2]”2,
a’ =[b2x2+(mW2— mlz)x +mlz]“2,
m, 2 a? m o\
“[2(—1) ] <E> [2<—l) ]
"w "w

and
ml 2 1 2 m 2b2
!
T Ty (2]
mW a w l mW

The values for f(g?) can be obtained by numerical
integration. The results for v, and v, are given
in Figs. 2 and 3 where the mass myy is chosen
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f(c)

FIG. 2. Values of f(¢%) for Ve at low g*. The form
factor F(g?) =-g?e(16m%*my, %) 14°f(g%). Note that [f(qz)]v
=_13.9 at ¢°=0 and [f(g¥)] =0 at ¢* = 4m“2. The mass
of W is arbitrarily chosen to be S)m“2 .

arbitrarily to be 9m , .

If we neglect both (m;/myy)* and (;¢*/m W) as
compared to 1, but keep all orders in (¢*/m;?),
Eq. (8) becomes simply

m m
f(qz)%g[ln(ls'z)-g'_;]-g1n<7nﬂ) +£3g<_i>

2._1/2

6500 (G

+

wph

1+[1+(am 2/g®) 2
xIn ! ; (©)
141+ (4mlz/q2)]”2
As qz" 0:
£(0) =5 1n(137) - § InGm | /m ) 2, (10)

where the first term, £1n(137), can be regarded
as that due to the positive charge distribution
(W*) and the second term, -% InGmy,/m))?, as
that due to the negative charge distribution (I7).
Because of the difference in the masses between
e” and u”, the form factors f(g?) belonging to v,
and v, for ¢*s4m,® are very different. For
very large values of g%, we can neglect m; in (8);
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FIG. 3. Values of f(¢?) for v, and v, at intermediate-
g% and at high-q? regions with my =9m,. Note that
ftghly, =0.30, at g*=0.

the two form factors then become the same.

In the expression (8) above, we include only
those higher order effects that give the - Ina
term for f(0). Therefore, we expect f(0) to be
accurate to the order of either |Ina|™* or |ln(n,/
m)?17*. On the other hand, the shape of the
curve [f(¢? -f(0)] is of a much higher accuracy.
Similar considerations lead one to expect Eq. (8)
to give the correct values for the slope (3f/a¢?)
at g?=0 to the accuracy of |aInal, and for all
the other derivatives 3"f/a(g%)" to the accuracy
of a.

Throughout our considerations of higher order
graphs we have implicitly assumed that (¢°/m,*)
is not larger than (1/a). Other correction terms
may become important if this does not hold.

In considering possible measurements of f(g?)
one may take as an example the reaction vy +p
~v;+h. The differential cross section for this
reaction through the virtual emission and absorp-
tion of photons can be written as

do=[(4r)"*(137)"'m W'z(q2+mwzlf]2dav, (11)

where do, is identical in form with the corre-
sponding expression for the reaction vy tn - " +p
at the same ¢%, provided m ; and the axial-vector
form factor are set equal to zero and the vector
form factors are replaced by the corresponding
electromagnetic form factors of the proton. The
numerical values of dov have been given in the
literature.® The rate for (v;+p -y +p) is, thus,
expected to be ~10”* times that for (y+n~1"+p).
This small cross section makes the experimental
detection of f(g?) difficult, though not impossible.
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We hope the marked difference between f(g?) for
ve and v, at small ¢° may stimulate some ingeni-
ous use of not only the high-energy v,, beam from
the multiple BeV range accelerators, but also
the large, available low-energy v, fluxes from
either nuclear piles or other radioactive sources.
In the latter case, one might study nuclear exci-
tations that could be induced by the charge dis-
tribution of the neutrino. An alternative method
is to use such neutrinos to study the reaction v,
+te” ~yp+e” or v, +e” -y, +e”. The lowest or-
der weak process is through an exchange of W*.
In addition to the radiative corrections, there is
now a further correction of a magnitude ~a due
to the interference term between the W-exchange
process and the y-exchange process.

Remarks.— (1) To give a simple illustration of
the limiting method A - « which yields the domi-
nant lno term from a divergent power series ex-
pansion such as (6), we may consider a simple
integral

HO) =[x + 1) ax (12)

where % (z) is an arbitrary function of z that has
a power series expansion at z =0, and as z - «,
h - 0 sufficiently fast so that H(») exists. Ex-
panding #(ax?) as a power series in a, the most
singular part [H(A)]g of the power series expan-
sion for H(A) is found to be of the form

BW]_=©O1mA% +T, “a (@rY",

where a,, are numbers. Using the same argument
as that given above, we find, in the limit A - o,
[H()]g =-3k(0) Ina + constant. In this simple ex-
ample, the same asymptotic expansion can be di-
rectly obtained from (12), which, at A - =, may
be written as

H(°°)=/°°(y +a'/?) " h(y®dy

by substituting y%=ax?. It is easy to see that as
a -0, H(w)-~-%1(0) Ina, which confirms the re-
sult obtained by the limiting process. Further-
more, by considering the sums of the less singu-
lar terms in the power series expansion of H(A),
one can obtain systematically the complete asymp-
totic expansion of H(«) for small a.

(2) For k+0, the power series in & is much
more divergent. For example, instead of (6),
we find

F, (0] =g kerD)T b (Pan’)".

Substituting x = k2 A* and carrying out the limit

A - o, keeping « and « finite, we find the rather
strange result [F,(0)] = constant x g2 so that this
contribution to the charge radius is independent
of e. For a spin-3 charged particle without strong
interactions, it is well known that a theory with
an intrinsic anomalous magnetic moment (which
corresponds to the k # 0 case) leads to a much
more singular power series expansion. Such a
theory does not correspond to any known particle.
The above result suggests to us that this may also
be true for spin-1 charged particles.

(3) In deriving (8), the &¢-limiting formalism is
used in which both W propagator and vertex func-
tion depend on ¢ explicitly. They are modified,
together, because of gauge invariance. In the
limit £ -0 (i.e., A -~ ), these modifications in
the vertex functions are found to give finite con-
tributions to (8). It may be emphasized that (8)
is actually independent of the explicit form in
which A is introduced, provided gauge invariance
is strictly maintained.

(4) The higher order weak interactions are not
included in the above derivation. Equation (8) is
expected to hold provided (A/my,)*> a~'. On the
other hand, the higher order weak interactions
become important only if (A/my,)? is greater than
£~ % which is a completely different region. If we
envisage the physical result as being reachable
by gradually increasing the cutoff, the higher or-
der electromagnetic processes become important
at much smaller cutoff than the higher order weak
interactions; therefore, they should be summed
first. Mathematically, this corresponds to the
introduction of a different cutoff A’ for the weak
interactions. The limit A - « for the electromag-
netic interaction should be taken before the limit
A’—~ o, It is possible that the second limit A’ -«
may bring some additional changes. However,
because of the necessary modifications of the W
propagator by its electromagnetic interaction,
the magnitude of these higher order weak inter-
actions is expected to be quite different (and per-
haps much smaller) than would be indicated by
the use of the free W propagators (without elec-
tromagnetic interactions).?
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In this Letter we describe some experimental
and theoretical consequences of the fact that res-
onance poles may appear on more than one Rie-
mann sheet of the S matrix. We have in mind
particularly those resonances which belong to
multiplets in the unitary symmetry scheme SU,.
The main points we wish to note are these:

(i) In the S matrix for two or more coupled chan-
nels a resonance may appear as a pole on more
than one of the unphysical Riemann sheets.

(ii) In general, only one of these poles (the dom-
inant pole) will be near to the physical region.
Under certain circumstances, however, two poles
may be comparably important, in which case in-
terference between the poles could have an ob-
servable effect on the position and shape of the
resonance.

(iii) In the case of resonance multiplets of the
approximate symmetry scheme SU,, the presence
of several poles on different sheets representing
a single resonance allows the members of each
multiplet to move into coincidence, when full sym-
metry is established, without any of the difficul-
ties discussed by Oakes and Yang.!

The circumstances under which a resonance or
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bound state leads to poles on more than one Rie-
mann sheet can be examined in terms of analytic-
ity and unitarity of the S matrix.? This examina-
tion will not be given here, but we wish to note
that in addition to the usual assumptions of S-
matrix theory, our work requires analyticity in
the coupling between different channels.® For the
sake of brevity our discussion is given, instead,
in terms of a simple resonance model based on a
sum of self-energy diagrams.* We should, how-
ever, emphasize that our results are more gen-
eral than the particular model considered. In par-
ticular, the fact that the model is S wave is not
essential, and identical results hold for any angu-
lar momentum state provided similar require-
ments of analyticity are satisfied.

We consider a single unstable particle of mass
M which has two decay modes, both into two iden-
tical particles of mass m, (r=1,2) with 2m, <2m,
<M. The resonance model gives, as scattering
amplitude for two m, particles,

All(s)=ig12/[s—M2+E(ar+ibV)], (1)

where g, is a coupling constant and



