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A recent Letter of Oakes and Yang' raises the
question of the position of resonance poles of the
S matrix in a multichannel situation when the reso-
nance is near the threshold of one of the coupled
channels. We will discuss this question stressing
the well-known fact that more than one pole of S
is usually associated with any resonance. ' It is
generally assumed that in the case of a narrow
resonance there is just one "nearby" pole which
can be reached by going a short distance from the
physical line into the lower half k' plane. One
readily finds, however, that there will usually be
two nearby poles if the resonance lies very near
a threshold. Furthermore, the nearby pole, in
case the resonance lies above threshold, is not
the "same pole" in case the interaction is strength-
ened or masses increased to that the "same reso-
nance" lies below the threshold. These general
considerations seem to preclude general use of a
pole of S to define the position of a resonance.
This is not an especially new result, but we feel
it needs emphasis at the present time. In a sec-
ond paper' we will consider the other customary
definitions of resonance position and briefly re-
examine the problem investigated by Oakes and
Yang: Under what conditions can perturbation
theory describe the motion (due to a change in in-
teraction or channel thresholds) of a multichannel
resonance'f)'

We restrict ourselves to a finite number of two-
body channels, and we neglect the possibility
(which in practice can be very important) that the
left-hand cuts in amplitudes coupling closed chan-
nels occur at or above the threshold in question.
The threshold in question is generally above some
thresholds and below others that play a significant
role in the resonance. In terms of the T matrix

for a single partial wave, unitarity dictates that

where T is symmetric by time- reversal invari-
ance; we use the normalization Tjj = W exp[i'
—(2lj+1) ink ]sindj', p is a diagonal matrix; p&
= exp[(2lj+15 1nkj]/W and 8 is diagonal with ele-
ments

1 above the ith threshold
j 0 below the ith threshold.

r-' =M(k. ') - ip, (2)

where M(k ) =M~(k ~) and M is analytic in k; and
k in the region. We neglect the possibility of
isolated poles of M between the ith threshold and
the resonance.

At resonance poles of T, detT '=0. We, there-
fore, have the eigenvalue equation

where ~ =0 at poles of T and g is the resonance
eigenvector (determining the relative weight of
various channels in the resonant system}. We

We first confine our attention to the neighbor-
hood of the ith threshold, assuming for simplicity
that the resonance width is small compared to the
distance to other thresholds. We can thus stay on
a single uncut sheet with respect to the variables
k ', jei, since we include only the ith channel
t/reshold branch point in our region. We chose
to be on the sheet where k»& 0 for all j below i,
and ikj & 0 f-or all j above i (this sheet straddles
both physical and unphysical sheets). All k "s,
j t i, are analytic functions of k ' in our region.
From (1) we write in our region'
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can write in our region that the pole(s) are at solu-
tions of

i=i (k. )-f~ (k. )-fi.(k. )k =0.2&+1
c i 0 i i i i

(4)

P=P +P0P &

where pc includes all channels below i (the closed
channels), po all channels above i, a,nd p is the
diagonal matrix with all elements equal to zero
except the ith which is equal to exp[(2l; + I) Ink;]/tK
At the ith threshold,

~ = &~(M fp )&I-&~r., ~ = ~~a &I&tC,c c ' 0 0

so that

x, &0;

~, (k, ') = (p, /k, ')C,.'/KC,

where g, is the component of & in the ith channel
and g denotes the transpose of &. The quantity

/gg is the reduced width in the ith channel.
This quantity is approximately real and positive
in case of a narrow isolated resonance. If the
Breit-signer one-level formula applies (which
seems to be true, for example, in the case of the
baryon decuplet resonances), it is exactly real
and positive on the real k, ' axis.

Corresponding to a narrow resonance near the
ith threshold, we look for a solution of (4) near
the physical region and near the threshold. We
need to keep kin dependence in (4) only for n ~ 2l;
+1. We take I; =1 as typical of /& 0 cases, and
write for (4)

a- M'. —iP -ink. =0,
g g

with a, b, P constant and real, P &0, and a approxi-
mately real and positive. We have ignored here
the k. dependence in ~o for simplicity since ~,
should be small and positive in the whole neighbor-

By explicit construction of X in the two-channel
case (see below), one readily sees that aside from
left-hand cuts, ~ is analytic except for the physi-
cal cut with branch points at the various thresholds
and other cuts whose branch points are points
where two solutions x of (3) coincide. If there is
only one resonance in the vicinity of the ith thresh-
old, we can then conclude that ~c, ~0, and A,i are
analytic functions of ki' in our region. By defini-
tion we take ~c and ~0 to be real analytic functions.
I et

hood for a narrow resonance.
The parameters in (5) are further restricted by

the condition that there be no nearby pole of T in
the physical sheet (i.e. , in the first quadrant in
the k; plane). A faraway solution of (5) in the
physical sheet is not disturbing, as (5) is only
valid in a small region. In fact, it is only in this
way that we obtain a general prescription (for a
variety of values of a) to avoid a pole in the phys-
ical sheet. This prescription follows by making
a smooth transition from the elastic case (o. & 0, P

=0), letting P increase from zero: If we have a
narrow resonance near threshold we find that 5
must be positive and relatively large,

y&&)a ( )P /

implying that one solution of (5) is

k. = ib/o. .

This point may be in the physical sheet but lies
far below threshold and merely simulates the left-
hand cut in our approximate form for X. We do
not consider this solution further. '

The two other solutions of (5) are

k. =a(a —iP/b)"'- (fn/2b)(a - iP/b) + ~ ~ ~ .

These are the positions of (the) two resonance
poles in our region (i.e. , if ~ t2 ~

and P are small
enough so there is a narrow resonance near thresh-
old). In the limit of elastic scattering in channel
i, P = 0, and the two poles are at points k; and
-k;* for a &0 as shown in Fig. 1. They merge if
a = 0, and separate and go up and down the imagi-
nary axis for a & 0. The pole on the positive im-
aginary axis in the latter case corresponds to a
bound state. In the coupled-channel problem, (8)
yields the pole positions shown in Figs. 2 and 3.
We see that the pole positions are displaced rela-
tively little from the elastic case, but that now
the two poles never coincide for any value of a (no
solution can generally be found for Rek. = 0).'

g
Our result is then as follows: For a&0 the reso-
nance lies above threshold, and the nearby pole
is just below the positive k; axis. For a &0 the
resonance lies below threshold, and the pole close
to the physical line is just left of the positive im-
aginary k; axis. But these are not the same poles,
as a is continuously changed to go from one situa-
tion to the other. Furthermore, if the resonance
is very near threshold (a = 0) there are two poles
near the physical line.

The situation for d or higher waves is essen-
tially the same. For s waves it is more compli-
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starting at k, = 0 and k, = 0, there is another branch
point at the point where the two solutions coincide.
%e assume this resonance coincidence point or
double pole does not occur in the region of interest
(i.e. , only one resonance lies close to the thresh-
old in question). Then g will be an analytic func-
tion i.n the region except for the physical branch
cuts. The other remarks concerning the division
(4) of l. can also be confirmed by direct examina-
tion.
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