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High-energy neutrino experiments at CERN and
Brookhaven will soon be able to give some infor-
mation on the nucleon axial-vector form factor,
through separate measurements of vn -pl and Pp
-nl cross sections. ' W'e report here a disper-
sion-theoretical estimate of the rate of decrease
of this axial-vector form factor + with increasing
momentum transfer. g is defined by

(E E /M')" (—OIA INN)

= u —(y5y F(s)-2iy6K G(s))u
N 5 p, 5

where A =weak axial-vector current, K& =,-'(PN
+PN)&, M = nucleon mass (with pion mass g taken
to be unity), and s =4K'. Here and in the following,
the trivial isotopic spin dependences will be sup-
pressed.

Among the intermediate states that can contrib-
ute to the imaginary part of +, we will keep only
the one with the lightest mass, i.e. , the 3m state,
and will further assume that this is approximated
by the mp state. We will use the generalized uni-
tarity and N/D formulation appropriate for 3-
particle intermediate states only as a guide, ' but
will treat the p as if it were stable as much as
possible. Under such an assumption one needs
the matrix elements (wp INN) and (OIA iwp).

(a) The (wp INN) amplitude. —For the discontin-
uities across the dynamical cuts of this amplitude
we will use Born approximation with one nucleon
exchange. This is a strong assumption, ' with
which, however, the problem simplifies consider-
ably, because it contributes to only the following
three invariant amplitudes:

2(E E E E /M2)'"(wpINN)
N N m p

=p (iy ti" Ka—(s, cos&)+iy tt* Pp(s, cos8)

+iy g Q tI *a(s, cose}}u5pvps (2)

where tt =polarization vector of p, Q& =-', (PP- Pw)&,
P = -', (PN - PN ), and ii = c.m. scattering angle.

From invariance considerations, the matrix ele-
ment (0 IA „Iw p) is of the form

2(E E )"'(OIA iwp) =t) KQ A(s)+t} B(s)
p

+q.KK C(s).

The form factor C may be relatively large be-
cause it receives contribution via a one-pion state.
But it is clear that C cannot contribute to any J
= 1 state. From Eqs. (1), (2), and (3),

ImF (s) = (q/21s)X~(s)B(s) (s )42), (4)

where

i (s) =- i(s, cose) coseJ ' Mq d cos8
p 8~

and q and /=magnitudes of p and N c.m. momen-
ta, respectively. We now write a set of N/D equa-
tions for X (s). We will denote by the subscript
1 the NN channel with J=l, 1=1, and parity+;
and by subscripts 2 and 3 the two mutually orthog-
onal mp states with these same quantum numbers,
such that A~(s) corresponds to the reaction 1-2.
Thus

J 3 -1i (s) = Q N(s) D (s),2,' —1

[discND '(s')]. D(s'} .
N(s). =-) ~ds', (6)

V w K~I. s -s

q "N(s') . .
D(s), , =6. . +—i, , ds',

1 U
ij ij w JR 2ks'(s'- s)

where I. denotes the dynamical cuts and R the
physical cuts. In Eq. (7), a subtraction may be
required. W'e will solve these equations by the
first iterations in a determinantal approximation,
replacing the discontinuities across the dynamical
cuts by the Born-approximation contributions.

Consider first N(s)», corresponding to wp scat-
tering. The Born approximation with one-pion
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exchange is of the form

4(E E E E )'"(11p(II'p') =M(s, cosg)q It'q"It~. (8)
p 7T' p'

The relevant amplitude is given by

M(s)»-=- M(s, cos8)
6

d(eos8). (9)
-1 16'

~ [disci ~(s')]D(s')
X(s)„=- — ds'.

7T s -s

Since we have found D(s)» to be very slowly vary
ing, an approximate solution is obtained in the
form

We make one subtraction in D(s)» at s = 42, then

in the first iteration, i (s)=i (s) Ds» (i4)

1 " F(s')ds'
lT&1 S - s

1
F(s) = 2, sin'eocosgo;

32/

eos&, =—2(2m '+1- s+2q').
p

(10)

We will take s to be around zero.
(b) For B(s) we will write the dispersion rela-

tion

( )
1 t ImB(s')

s'- s (15)

(with possibly a subtraction).
From Eq. (4) one sees that B(s) should have the

same phase as i *(s) over the physical cut in our
approximation. From Eq. (14), since iB A is
real, B(s) should have the same phase as D(s)».
Thus a solution to Eq. (15) is

The positions of the cuts are shown in Fig. 1.
Substituting this solution into Eq. (7) for D(s)»,
one finds the integral term to be much smaller
than the constant term, and D(s)» is very slowly
varying over a wide range of s. Similarly one
finds the off-diagonal term D(s)» to be typically
two orders of magnitude smaller than D(s)».
Furthermore, it turns out that the Born ampli-
tudes in Eq. (2) do not contribute to the reaction
1-3. Thus the influence of channel 3 on the re-
action 1-2 is negligible. If one consistently neg-
lects also the NN state in summing over inter-
mediate states in view of its higher mass, one
can approximate Eqs. (5) and (6) by

B(s) =B(0)D*(0)„/D*(s)„. (16)

x ID (0) I'/ ID (s) 1' (17)

Since iB A (s)-s lns as s- ~, the integral of
ImF(s) over the physical cut is actually conver-
gent in our approximation. We will therefore try
an unsubtracted dispersion relation for F (s):

We have taken a possible multiplicative polyno-
mial to be unity, because D (s)» increases only
logarithmically as s- ~, so that any other choice
would lead to B(s) —~ as s —~. So finally one has

ImF (s) = (q/2vs)B(0)i (s}
J

~ ~

i (s) =X(s)„/D(s)„, (12)
( )

1 Im(Fs')

m„, s'- s

S-~/any

AS= 6/ ReS 8&/

FIG. 1. The one-pion-exchange and elastic cuts for
M(s) 22.

The requirement F (0) =8~ fixes the unknown pa-
rameters in Eq. (17}, and the resulting behavior
of F(s) is shown in Fig. 2. If one approximates
the curve by a formula of the type F(s) = (1-b's/
12) ' for (s i&150, one finds b «0. 22x10 "cm.

(e) In conclusion, we make two remarks. If
an unsubtracted dispersion relation for F(s) should
prove to be invalid and a once-subtracted disper-
sion relation must be used, the constant B(0)
must be determined by other means (such as the
311 decay of the W boson). As determined from
the unsubtracted dispersion relation, tIB(0) turns
out to be =0. 7g~M', which should perhaps be con-
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the NN -vp amplitude x (s) in the low-energy re-
gion, by Eq. (1 t) imp(s) would also become con-
centrated in the low-energy region, leading to a
faster drop of P(s) with increasing -s than we
have found. In our N/D solution no such enhance-
ment in z~(s) was found because 1/D(s)» does not
show any marked resonance around s = 65, in con-
trast to the full amplitude M(s)».
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FIG. g. The axial-vector form factor I" (s) jg& as
a function of the square of momentum transfer -s.

sidered as an overestimate in view of the neglect
of contributions to g~ other than the np state. '
Another remark is that the short cut above the
real axis in Fig. 1 gives rise to a marked reso-
nance behavior in the np scattering amplitude
M(s)» around s = 65. There have been consider-
able interest and discussion as to whether such a
resonance in unstable particle scattering can
manifest itseU in other physical processes by
coupling through unitarity. ' So far the attention
is mostly on its effect on production amplitudes;
e.g. , whether the resonance in nN~ scattering
can enhance nN - nN*. %e have here another
place where a similar effect can be looked for,
where the physical manifestation, if any, is through
the behavior of the form factor. This is because
if the resonance in np scattering should enhance
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Experiments on the elastic scattering of high-
energy electrons from H' and He' have recently
been carried out'&' at Stanford University on tar-
gets specially prepared by the Los Alamos Lab-
oratory. These results were interpreted in a
straightforward manner and provided distributions
of charge densities, magnetic moment densities,
and sizes of the two mirror nuclei.

It is also possible to make a much more detailed
analysis of the appropriate form factors that is
able to describe some of the internal dynamics
of the nucleons in the ground states of H' and He'.
Moreover, by methods we shall describe, the
charge form factor of the neutron can be found
from the above-quoted experiments. The charge
form factor of the neutron has heretofore been an


