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packet C as shown in Fig. 1. But this variation
in D carries with it slightly different g values
for packet A as compared to C, and therefore
different orbital hf fields, given by the following
correspondence:

D = 4./2)(g —g ) —~D = 4/2)(~g —5g ),
ll li

which, with 5'---',-5gii, gives 5gii-(4/3x)5D, and
from Eq. (2)

5H = 1.25x 10'(4/3X)5D(l/r') gauss.hf
orb a.u.

Fromm to C in Fig. 1 one has 6D =-6jaj=-200
gauss, which together with the value of x=-280
cm ' leads to 6g =+1.Ox 10 4 and 6H ~+90-bh'
gauss or 6H =-90 gauss, as compared tototal
the observed value of -130 gauss. The agreement
is quite satisfactory as other small effects may
be present such as small variations in core po-
larization. Note that in going from A to C the in-
crease of 130 gauss in the orbital hf field is out
of a total orbital field of 170000 gauss. One can
anticipate the appearance of this phenomenon in
other inhomogeneously broadened lines and cor-
respondingly the probing of small changes in hf
field with applied external electric field or axial
pressure.

We wish to thank J. P. Remeika for preparing
the crystals, G. E. Devlin for his experimental
assistance and suggestions, and M. Blume, V. Jac-
carino, L. R. Walker, R. E. Watson, and Y. Yaf-
et for helpful discussions.
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This note reports the existence and some con-
sequences of bound states in a Heisenberg ferro-
magnet. ' In this work' the interactions of spin
waves has been studied, following a method de-
veloped by Van Kranendonk. ' A complete solution
to the problem of two reverse spins in a crystal
lattice of otherwise parallel atomic spins (S = '-, )
has been found. A hard-core interaction has been
introduced in the Hamiltonian to prevent these
reversed spins from being localized on the same
atomic site. As in the linear chain, it is found
that for some eigenstates of this system, the two
reversed spins are bound together in a stable
complex, which travels through the crystal.

The Heisenberg Hamiltonian is

8=-2JQ S. S. +p+S. +~Ncaa,
2 j 2

where the sum over 2 and j runs over all pairs of
nearest neighbors in a simple cubic lattice, the
spin vector S; being localized at the site R;; g
=gp, BB, where g is the g factor of the magnetic
moment, pB the Bohr magneton, and 8 the ex-
ternally applied magnetic field.

The space spanned by 8 can be divided into N

orthogonal subspaces in which the total z compo-
nent of the spin angular momentum is a constant.
Each subspace is labeled by n, the number of re-
versed spins in the system.

The n =0 subspace is the single ferromagnetic
ground state; n = 1 has eigenfunctions which are
the spin waves'; the n = 2 subspace was solved
exactly and the results are described in this note.
We consider spin deviation states li, j) with two
flipped spins at R; and R and express the eigen-
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functions in terms of these states:

f"' = QU(R. , R.) I i,j).

We obtain a set of difference equations already
written by Van Kranendonk. ' We introduce new

coordinates, the center of mass of the two spin
deviations and their relative separation, and trans-
form the initial set of equations into a new set for
F-(R), where R= R; —R, and K is the total mo-

K
mentum of the two spin-deviations state

U(R, , R, ) = exp[ ', iK-(R, +R.)]P-(R.—R.).j
= ' j j K i j

This set reads

(E- 128)F-(R)+2jg-F-(R+a) cos'-K a
K a K 2

= V(R)F- (R),

where a represents the nearest neighbors, and

V(R) = V05(R) —2+gab(R+a) which secures

U(R. , R, ) = 0
g* j

required by our choice of S=-', . This choice of a
hard core was made by Van Kranendonk and held
responsible for his erroneous results by Dyson. '
V(0)FK(0) is defined by

V'(0)F- (0) = 2'-F- (a) cos'-K- a;
K a K

in this way F&(0) —0 as V(0) - ~ unless E = 12
+ V(0). Therefore the energy associated with the
state FIf(0) is infinite and this spurious unphysi-
cal state automatically disappears. To get rid of
this solution Dyson introduced the "kinematical
operator. "

To solve the set we introduce Green's function'

2 + cosk Rcosk R'
K ' N k E-E(k, K)

where

E(k, K) =157-2~-cos';K acosk a,

and the set reads

F (R) =ups-(R, 0) cos';K i-x-(R, i))F (i).

We can always restrict FK(R) to even functions in
R and never have more than a set of three equa-
tions with three unknowns. Depending on whether
E is inside or outside (below as it will turn out)
of E(k, K), we have scattering or bound states.
The energies of the bound states are obtained by
equating to zero the determinant of the coefficients

and

2a =f df exp(SI/a)I, (I)II,'(I)+I,(~)I,(f) 2I,2(f)), —

where

and

n =cos-', K a

B=E/4Z- 3.

These integrals converge only if 8/a & -3, which
in turn means that the bound state is either below
or at the bottom of the continium. The limiting
case gives the value of K for which a bound state
splits off below the continium. A, appears when
cos K a=0. 340 and A, when cos&K. a=0. 187.
Therefore these are spin- complex eigenstates.
We note that the bound states are well separated
from the bottom of the band. The gap is of 8J
and they mill give contributions of the order of
exp(-2/we) to any thermodynamical parameter
and therefore do not appear in any series expan-
sion in powers of 8. 8 is the temperature in di-
mensionless units, 8 =k T/4w J.

A comparable analysis has been carried for the
scattering and a general theory of spin-wave in-
teraction using Van Kranendonk's method has
been obtained and is hoped to be published later.

It is a great pleasure to acknowledge the super-
vision and the guidance given by Professor G. F.
Koster. The author expresses also his gratitude
to all the members of the solid-state and molecu-

of the defining set.
For a given value of K, the total momentum,

the states can be classified according to the ir-
reducible representation of the group of the wave
vector K. An integral representation of the
Green's functions is easy to find in terms of a
product of Bessel functions of order p of imagi-
nary argument II (t). For small K there is no
bound state, therefore no bound states of very
long wavelength. The fact that this set has always
been handled in the limit K very small is respon-
sible for the belief' that Bethe's' "spin complex"
was characteristic of the one-dimensional chain.
For an arbitrary K, as )Kj increases one bound
state appears, then another, and finally a third
one. To give an example, we choose K in the
(1, 1, 1) direction. We have a P, solution' (F
=F =F~) and a doubly degenerate A, (F =-F;

= 0 and F =F = -12F ). The energies of thesez x ystates are, respectively, solutions of

a =-(h/a +3a)f dt exp(8t/a)l, (t)I,'(t)
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lar theory group and his leader, Professor J. C.
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sations and to Michael Wortis for communicating
a preprint of his article.
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The hyperfine separation of hydrogen in its
ground state, b,v(H), has been determined to the
precision possible with currently available fre-
quency standards by means of the hydrogen
maser. ' ' In this experiment two masers were
operated simultaneously for purposes of tuning,
checking internal consistency, and measuring
the wall shift (the effect of collisions with the
storage bulb on the transition frequency). A sec-
ondary frequency standard (National Company
Model NC2001 cesium beam frequency standard)
was also operated in the laboratory, and the fre-
quency of this standard was monitored by one of
the masers at half-hour intervals for a period
of twenty-four hours. The average frequency of
the secondary standard during this period was
determined by J. A. Pierce of the Cruft Lab-
oratory in terms of the 100-kc/sec time signal
broadcast on Loran-C east-coast chain. The
frequency of the Loran-C signal during the meas-
urement period was subsequently determined by
%. Markowitz and R. G. Hall of the U. S. Naval
Observatory in terms of the weighted mean of a
number of cesium-beam controlled frequency
standards at different standards laboratories.
By this method the maser frequency was referred
to the mean of a number of primary standards,
allowing a precision characteristic of the agree-
ment among those standards.

Tuning a hydrogen maser involves tuning the
cavity and adjusting the magnetic field to a known
value. Cavity tuning was accomplished using the
well-known fact that the maser oscillator fre-

quency is "pulled" by a mistuned cavity by an
amount proportional to the atomic resonance
width. ~ By increasing the beam flux to allow
spin-exchange collisions, the resonance width
could be increased for this purpose by as much
as a factor of four. The cavity was adjusted un-
tilthe oscillation frequency was independent of the
flux.

In addition to causing relaxation, spin-exchange
collisions can introduce a small frequency shift. ~

This shift depends upon the atomic resonance
width in just the same fashion as the cavity pull-
ing, so by tuning the cavity with the above method
any systematic frequency error is exactly can-
celed by compensating mistuning of the cavity.
A preliminary experiment in which the resonance
was broadened by deuterium confirms this result
to well within the accuracy of concern here, and
further experiments are in progress.

The magnetic field was adjusted for a Zeeman
frequency of 10 kc/sec by the double resonance
technique. ' A 10-kc/sec signal from the fre-
quency standard was introduced into the cavity,
and the field could be trimmed to within 1 cps
of resonance, which introduced negligible error
in the frequency of the field-independent transition
(F=1,m=0)-(F=0, m=0). By these means the
masers could be independently and reproducibly
tuned to agree to better than 1 part in 10'2. Fluc-
tuations between the masers in ten-second count-
ing periods were typically 1 or 2 parts in 10~3.

The following scheme was used for monitoring
the local standard: The 5-Mc/sec output of the


