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Mackinnon, Taylor, and Daniel' have recently
reported the observation of magnetoacoustic
resonances in the attenuation of longitudinal
sound waves propagating parallel to the mag-
netic field in cadmium. At present, no theo-
retical treatment®™* of this geometrical arrange-
ment seems applicable to the experimental re-
sults. In fact, the semiclassical theory of Co-
hen, Harrison, and Harrison predicts that the
attenuation should be completely independent of
magnetic field. A possible explanation of the
effect, based on rather intuitive reasoning, has
been suggested by Mackinnon, Taylor, and Dan-
iel. This explanation associates the effect with
deviations from a spherical Fermi surface.

The concepts involved are illustrated in Fig. 1,
where the Fermi surface (or part of the Fermi
surface) is taken to be an ellipsoid tilted at an
angle away from the direction of the magnetic
field B,. The effect of the field ﬁo is to cause
electrons on the Fermi surface to move around
the surface on a plane perpendicular to the di-
rection of the field. The velocity of an electron
in real space is normal to the Fermi surface.
Thus electrons on the orbit marked A will oscil-
late back and forth in real space in the direction
of ﬁo during each cyclotron period. Electrons
on an orbit such as B will move a certain dis-
tance in the direction of §° every cyclotron pe-
riod. (The arrows indicate the direction of the
velocity in real space at the points where they
are drawn.) The possibility of spatial reso-
nances between the wavelength of the sound wave
and the “oscillation distance” in case A is obvious.

The object of this note is to present a funda-
mental theoretical treatment of this effect which
points out the mathematical origin of the oscilla-
tions. A detailed analysis® of the dependence of
the amplitude and period of the oscillations on
the components of the effective-mass tensor, and
on the detailed experimental conditions, will be
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FIG. 1. A schematic of two possible electron orbits
in k& space in the presence of the field _ﬁo. In the case
of orbit A, the electrons oscillate back and forth paral-
lel to ﬁo. This can easily be seen from the directions
of the velocity in real space (normal to the constant en-
ergy surface) which are drawn at the ends of the orbit.
The cross-sectional area of this orbit is a maximum,
and we believe the resonances arise primarily from
this orbit. In case B, the electrons will drift parallel
to the magnetic field. They move with nonuniform
velocity, but cover a given distance each cycle.

presented elsewhere. The results obtained here
confirm the qualitative picture suggested by Mac-
kinnon, Taylor, and Daniel as the origin of the
effect, although the detailed conditions for ob-
taining maxima and minima are somewhat dif-
ferent.

We start with the Hamiltonian H, for a single
electron in the field B,:
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In the absence of the dc magnetic field B,, Eq. (1)
yields ellipsoidal energy surfaces oriented

at an angle to the &, and &, axis, the exact shape
and orientation depending on the parameters «,
to @,. We have chosen a Cartesian coordinate
system with B, in the z direction, and we have
taken the vector potential of the dc magnetic field
as (0,B,x,0). The eigenvalues and eigenfunction
of H, are given by

lv) = Inkykz> =L} exp(ikyy +ikzz)
x pn{x + [ﬁ(alaz)”z/mwo][ky + (0’4/0,2)kz I (@)

Eu =En(kz) =hw0(n +3)+ (a3 - a42/a2)ﬁ2kzz/2m. (3)

In these equations L is the length of an edge of
the cubic sample which contains N electrons.
The allowed values of the wave vectors k, and
k, are obtained by imposing periodic boundary
conditions, and u_ is a normalized simple har-
monic oscillator wave function for a particle of
mass m/a,, and characteristic frequency Wy

= le | Bylayap)'?/mc.

The calculation of the conductivity tensor is
completely analogous to that presented in ref-
erence 2 for an isotropic electron gas. We shall
only briefly describe the procedure here. If one
introduces a disturbance into the system, it will
set up a self-consistent field. We let A be the
vector potential of the self-consistent field, and
choose a gauge such that the scalar potential of
the self-consistent field is zero. The Hamilton-
ian for an electron in the presence of the field Eo
and the self-consistent field can be written

H=H,+H,, (4)

where H, is given by Eq. (1) and the linearized
expression for H, is

Hy=-(e/2c)(V-A+A-7). (5)

The velocity operator v is given by

v=(i/h)[H,, T). (6)

As in reference 2, one calculates the current in-
duced by the perturbation H, and uses Maxwell’s
equations to relate the induced current to the
fields. The induced-current density is calcu-
lated using the single-particle density matrix,
which is determined to first order in the self-
consistent field.

The zero-temperature conductivity tensor which

one obtains is
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In this equation wp2=4nNez/L3, and the tensor «
has diagonal components o, «,, @3 and two off-
diagonal components ay, =azy = a,. The vector
F,, is related to off-diagonal matrix elements
of the operator +(ve’d' T +¢'4°TYy)  and for prop-
agation parallel to the magnetic field (i.e., qy
=qy= 0) is given by
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where f, ,n(qz) is the following two-center integral

of harmonic oscillator wave functions:
A h(@1f? (i ). an
n'nlz ?/:oo xu.n,[x g \a, a4qz:| s

The conductivity tensor is quite similar to that
obtained in the usual perpendicular field mag-
netoacoustic effect in the case of a spherical
Fermi surface. In fact, the functions fn’n(qz)
are exactly the same functions of the parameter
¢ as those given in reference 2, but in this case
£=(1/2mwy)a’q,?/a, instead of hqy?/2mw,. The
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resonances in the normal magnetoacoustic effect
arise from these matrix elements, which in the
semiclassical limit reduce to Bessel functions?®
of order (n’-n) whose argument is (g,,0/wg)
X (n/ny)’2. The parallel field magnetoacoustic
resonances discussed in this work, like the
normal magnetoacoustic resonances, are semi-
classical in nature. The reduction of Egs. (7)-
(11) to the semiclassical limit? will again give
Bessel functions in the conductivity tensor.
From the similarity in the conductivity tensor,
we may assume that the resonances in the paral-
lel field case arise in the same way as in the
normal magnetoacoustic effect. The resulting
condition for a maximum in attenuation is

2((2rcny/ le | By) al/(aya,®)t 2] 2 =1a, (12)

where [/ is any positive integer, A the wavelength
of the sound wave, and n, the quantum number
of the last occupied Landau level.

It is quite simple to demonstrate that the quan-
tity on the left-hand side of Eq. (12) is equal to
the “oscillation distance,” ;£ |v, ld¢, for the
electrons on orbit A of Fig. 1. As we remarked
previously, these electrons oscillate back and
forth parallel to ﬁo as they go through one full
cyclotron orbit. The condition for minimum
attenuation would be that the “oscillation” dis-

tance equal a half-integral number of wavelengths.

We should like to point out that these resonance
conditions are quite different from those assumed
by Daniel and Mackinnon,®” although the calcu-

lations confirm the intuitive guess that anisotropy
of the Fermi surface gives rise to this effect.

*Present address: RCA Laboratories, Princeton,
New Jersey.

'L, Mackinnon, M. T. Taylor, and M. R. Daniel,
Phil. Mag. 7, 523 (1962).

2J. J. Quinn and S. Rodriguez, Phys. Rev. 128,
2487, 2494 (1962).

SM. H. Cohen, M. Harrison, and W. A. Harrison,
Phys. Rev. 117, 937 (1960).

4V, L. Gurevich, V. G. Skobov, and Yu. A. Firsov,
Zh. Eksperim. i Teor. Fiz. 40, 786 (1961) [translation:
Soviet Phys. —JETP 13, 552 (1961})].

5J. J. Quinn (to be published).

8M. R. Daniel and L. Mackinnon, Phil. Mag. 8, 537
(1963). In this paper the authors assume that

Fv dt=Ir
z

is the condition for maximum absorption. They show
that

S di= -(c#/lelB 0)(8A/8kz),

where A is the cross-sectional area of the orbit in 2
space. The electrons which we believe to be respon-
sible for the resonances have 84/8k_ =0.

TE. A. Kaner, V. G. Peschanskii, and I. S. Privorot-
skii {Zh. Eksperim. i Teor. Fiz. 40, 214 (1961) [trans-
lation: Soviet Phys. —JETP 13, 147 (1961)]} have made
some consideration of the propagation of sound in an-
isotropic crystals. For the case of propagation paral-
lel to the magnetic field, it seems that their reso-
nance condition would be similar to that of reference 6
instead of the condition of the present paper.

OPTICAL MASER OSCILLATION FROM Ni?* IN MgF,
INVOLVING SIMULTANEOUS EMISSION OF PHONONS

L. F. Johnson, R. E. Dietz, and H. J. Guggenheim
Bell Telephone Laboratories, Murray Hill, New Jersey
(Received 29 August 1963)

All of the solid state optical maser materials
known at the present time take advantage of pure-
ly electronic transitions in solids. We wish to
report the observation of fluorescence from Ni?*
in MgF, and optical maser oscillation in a line
which involves a transition between electronic
states of Ni®* and simultaneous vibrational ex-
citations of the MgF, lattice.

The polarization of infrared emission from
Ni?* in MgF, at 20°K is shown in Fig. 1. The
sharp structure near 6500 cm™ represents pure
electronic transitions between the first excited
state 3T, and the ground state 34,,! while the re-
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mainder of the spectrum arises from electronic
transitions with simultaneous emission of phonons
to the lattice. As can be seen from Fig. 1, the

7 spectrum coincides with the axial spectrum

and both the electronie and phonon-accompanied
transitions are, therefore, magnetic dipole. The
magnetic-dipole character of the purely electronic
transitions in MgF,:Ni?* has been reported earli-
er.? The intense narrow emission at 6500 cm™
consists of three closely spaced lines represent-
ing transitions from the lowest 37, level to the
three components of the 34, ground state at 0, 1,
and 6 cm™. The 1-cm™ separation is barely re-



